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0 fourth-order tensor given in equation (3.34)

Q scalar function given in equation (4.19)
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Om  fourth-order matrix tensor given in equation (4.22)
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Chapter 1

INTRODUCTION

The coupling of damage and plastic deformation in composite materials has been

studied only recently in the literature. Most of the available material on this subject is

scattered and isolated and no distinct correlation can be made among the various existing

models. In fact, there is no consistent and systematic approach to model damage and

plastic deformation in composite materials in general, and metal matrix composites in

particular.

Talreja [1,2] and Christensen [3,41 used a continuum approach to analyze damage

in composite materials. However, their analyses were restricted to elastic behavior and

treated the composite system as an orthotropic material. Recently, Dvorak and Bahei-El-

Din [5-8] proposed a model that deals with plastic deformation in composite materials.

Their analysis was based on the averaging technique of Hill [9,10] and the consistent

method. They identified two modes of deformation; one that is matrix-dominated and the

other is fiber-dominated. However, the model of Dvorak and Bahei-El-Din did not

consider any damage effects in the composite system. Another model that should be

mentioned in this regard is the recent work of Allen and Harris [111 and Allen, et al. 1121.

In this model, they analyzed distributed damage in elastic composites with thermal

effects. However, they did not consider the plasticity of the matrix material. Other works

that deal with this problem either partially or inconclusively are those of Dvorak, et al.

1131, Dvorak and Laws [14], Laws and Dvorak [15], Allen, et al. 116], and Lee, et al. 1171.

Most of the models mentioned above treat the problem of damage in composite

materials from a certain perspective. The analyses are either restricted or inconsistent

thus eliminating the possibility of generalization. One recent work that deals with the



generalization of damage models in metal matrix composites is that of Voyiadjis and

Kattan [18]. In this work, an attempt is made to provide a complete theory of damage

mechanics and plasticity for metal matrix composite. The formulation is consistent and

systematic and could be generalized to other types of composite materials. The resulting

theory is a coupling of the damage theory for metals [19) and the micromechanical

composite model of Dvorak and Bahei-El-Din [5-71. Two approaches are used in this

report. The first approach is overall in the sense that all damage mechanisms in the

composite system are reflected through a single damage variable. In this way, all types of

damage can be accounted for, including matrix cracking, fiber fracture, debonding and

delamination. The only disadvantage of this approach is that no explicit distinction

between all these types of damage is possible.

The second approach is local in the sense that two (or more) damage variables are

used to describe the various damage mechanisms in the composite system. One variable

is used to describe matrix damage while the other is used for fiber damage. The dis-

advantage of this approach is that no explicit description is provided for the interaction

between the matrix and fibers since this effect is lumped in either the fiber or the matrix

damage variable.

In 1958, Kachanov [20] introduced the concept of effective stress in an attempt to

model damage in deforming materials. This concept is now the basis for the widely

known subject of continuum damage mechanics. The major distinction of this subject

from other models (like the classical fracture mechanics methods) is that a continuous

damage variable 0 is defined and a rate equation is derived for it to describe the evolution

of damage, in particular the deterioration of the material before the initiation of

macrocracks.

2



Following the first paper by Kachanov 1201 on this subject, numerous researchers

used this theory to solve different types of problems involving crack initiation. Lemaitre

[21,22] used it to solve different types of fatigue problems. Anisotropic damage mechanics

was developed by Sidoroff [23] and was later used by Lee, et al. 1241 to solve simple

ductile fracture problems. Other researchers who used anisotropic damage mechanics

include Krajcinovic [251, Murakami [26], Lemaitre [27], Kattan and Voyiadjis 128,291, and

Krajcinovic and Foneska [301.

The basic principles and general formulations are first presented in Chapter 2.

The overall and local approaches are then presented in detail in Chapters 3 and 4,

respectively. This is followed in Chapter 5 by a general formulation of the evolution

equations of damage. A simple example is then solved in which explicit equations are

derived for damage evolution in a uniaxially loaded unidirectional thin fiber-reinforced

composite lamina.

The experimental part of this project is described in Chapter 6. First, specimen

design and preparation is discussed followed by a description of the actual testing of the

specimens. Two types of laminate layups are considered: (0/9 0 )s and (± 4 5 )s with two

types of specimens. The first type is a uniaxial test specimen, while the second is a

center-cracked thin plate in a state of plane stress. The damaged specimens are then

examined using image analysis techniques as described in Chapter 7. Also described in

this chapter is the damage characterization of the cross-sections of the damaged

specimens. A new damage tensor is then proposed based on measurements of the crack

densities of the damaged cross-sections.

Chapter 8 deals exclusively with the first type specimens of the uniaxial tension

test. In this chapter, the damage equations are formulated for a damaged laminate under

a general state of loading. Then, the equations are reduced to the case of uniaxial

0 3



tension. A system of simultaneous differential equations is obtained and solved

numerically. The finite element formulation of the damage theory for metals is described

in Chapter 9. The problem of a center-cracked plate is then solved using finite elements.

A



Chapter 2

CONSTITUTIVE MODEL

The formulation presented in this report applies to a composite system consisting

of an elastoplastic ductile matrix reinforced by elastic aligned fibers. It is assumed that

the matrix and fibers experience small strains and deformations. The composite system is

initially assumed to be free of deformation and damage. According to the principles of

continuum damage mechanics as applied to the composite system as a whole, a fictitious

state of the body is considered where the composite system is undergoing deformation

only, i.e., it is free from damage. This hypothetical state can be theoretically obtained by

removing the damage experienced by the body in its current deformed state. The above

argument can be analogously applied to each individual constituent of the composite in a

separate manner. In this case, each of the matrix and fibers will have a fictitious state in

which it is free of damage.

Upon close examination of the above discussion, it becomes clear that there are two

paths that can be followed to formulate a consistent damage theory for composite

materials. The first path is followed if one chooses to apply the principles of continuum

damage mechanics separately to each of the matrix and fibers as shown in the lower half

of the diagram in Figure 2.1. The approach used by following this path is termed "local"

in the sense that damage is considered in each constituent separately before the

composite equations are used to obtain the overall quantities. Alternatively, the upper

half of the diagram in Figure 2.1 shows that by applying the equations of continuum

damage mechanics to the composite system as a whole, a second path is obtained. The

approach resulting from adopting such a path is called "overall" since overall damage is

5
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considered in the composite system. The advantages and disadvantages of each of the two

approaches are discussed in later chapters of this report.

In the formulation, the Eulerian reference system is used where barred quantities

(quantities with a superposed bar) refer to fictitious (undamaged) states of the composite

or the respective constituent. The superscript "r" is used to represent "m" and 'T'

denoting matrix or fiber related quantities, respectively. Wherever the matrix or fiber

equations differ, actual superscripts "m" or "f' are used explicitly to diffuse any possible

confusion. Cartesian tensors are used throughout and direct tensor notation is employed

(i.e., tensors are denoted by boldface letters). The tensor operations and terminology used

in this paper are defined in Table 2.1. Finally, the superscripts "T" and "-1" denote the

transpose and inverse of a tensor, respectively. The inverse transpose of a tensor is

denoted by the superscript "-T".

The micromechanical composite model used is based on the work of Dvorak and

Bahei-El-Din [5-71 and Bahei-El-Din and Dvorak [8]. In this work, the relation between

the overall Cauchy stress a and the local effective Cauchy stresses dm and dr is given by:

C -rn-rn (+ Cf f (2.1)

where cm and ef are the effective matrix and fiber volume fractions, respectively, and a

superposed dot denotes material time differentiation. The two volume fractions satisfy

the relation em + ef= 1.

It is also assumed that in the current deformed state of the system, the overall a.2

local stresses are related by an equation similar to equation (2.1), given in the form:

z = c mOn + C fof (2.2)
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Table 2.1 Direct tensor notation.

Notation based on the
Direct tensor notation summation convention

of repeated indices

A: A Bij

A, B• Aij BkI

C: A Aijkl kl
A:C AIj

C • D Cijmn Dmnkl

C:D Cmnij Cmnk]
tr(A) = A'I2 Alii

I2 8i

4-,- (5ik 5jl + 8il 5jk)

A and B are second-rank tensors.

C and D are fourth-rank tensors.

1 2 andj 4 are the second-rank and fourth-rank
identify tensors, respectively.

where the volume fractions cm and c f also satisfy cm + cf = 1. The relation between the

volume fractions cm and cf and their effective counterparts tm and ef are discussed later in

the report.

The local and global strain tensors are also related through the volume fractions of

the constituents. These relations are listed below for both the effective and current

deformed states of the composite system:

i = zm m +c M (2.3a)

C = C m Crn + C f C f (2.3b)

An additive decomposition of the effective strain rate tensor - is assumed in the

form:

8



S= + (2.4)

where .. indicates the elastic part and ."" indicates the plastic part of the tensor.

Similarly, the effective matrix strain rate tensor is decomposed into its elastic and plastic

parts as follows:

tm = E' + ýM" (2.5)

Equations (2.4) and (2.5) are valid in this formulation because small strains are assumed.

In contrast, the effective fiber strain tensor is purely elastic since in this model the fibers

can deform only elastically until they fracture. Therefore, the effective (elastic) fiber

strain tensor is denoted by E.

2.1 EFFECTIVE COMPOSITE EQUATIONS

The local-overall relations for the stress tensor are assumed here in the fictitious

local and overall states as follows:

Fr= r: (2.6)

where the elastic stress concentration factor B~r is a fourth-rank tensor. In the ca'se of

plastic loading, the matrix elastic stress concentration factor fm should be replaced by the

matrix plastic stress concentration factor f3mp in an incremental relation as follows:

CFn B a (2.7)

It should be noted that in this case, the corresponding equation for the fibers remains as

given in equation (2.6) since the fibers are assumed to deform only in the elastic region.

The elastic stress concentration factors fm and Af depend only on the undamaged

coordinates t, the plastic matrix stress concentration factor 3,mP depends on both x. and

the effective strains. These stress concentration factors are termed effective factors since

they do not include the effects of damage and are defined in the undamaged states of the

9



matrix and fibers. They are determined by a number of models that are available in the

literature [5-71.

Strain concentration factors for the matrix and fibers are defined in a similar way

as given above. For elastic loading or unloading, the corresponding equations are given

by:

r = A r:p (2.8)

while for plastic loading, the incremental strain relation for the matrix takes the form:

m = Amp:i (2.9)

where Ar = A() and Amp • = AmP(xRP). Substituting equations (2.6) and (2.8) into equations

(2.1) and (2.3a), respectively, and simplifying, one obtains:

4m 4m + B-f I1 (2.10a,

cm •m + f f (2.10b)

Equations (2.10) represent constraints that must be satisfied by the effective stress and

strain concentration factors. The validity of models discussed later concerning these

factors must be checked against these constraints.

In the formulation of the model using the overall approach, the above equations

are sufficient for the derivation of the composite equations as shown in Chapter 3.

However, when deriving the equations of the local approach, one needs to consider

additional equations that are analogous to the ones above. These additional equations are

local-overall stress and strain equations in the damaged states of the matrix and fibers.

For the case of elastic loading or unloading, they take the following form:

r= Br'¢ (2.1 la)

Cr A A:F- (2.11nb
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where B1 and Ar are the current (damaged) stress and strain concentration factors,

respectively. The relations between these factors and the effective factors Br and Ar will

be derived later within the context of the local approach. Finally, during plastic loading,

the incremental relations are:

Sm B= BmP:, (2.12a)

SAmP:i (2.12b)

Again, the relations between BmP, Amp and EmP, Amp are given in Chapter 4 where the

local approach is e .d. It should be made clear that equations (2.11) and (2.12) are not

needed for the derivation of the overall approach as will be seen later. To complete this

section, one substitutes equations (2.11a) and (2.11b) into equations (2.2) and (2.3b) to

obtain the following two constraints:

cmBmm +cfB f = I 4  (2.13a)

cm Am + cfA•f -=-4  (2.13b)

Equations (2.13) should be compared with equations (2.10) where the similarity is very

clear. It is again emphasized that these four constraints must be considered when

deriving the specific models for the stress and strain concentration factors for the local

approach as shown in Chapter 4. However, the two constraints of equations (2.10) are

sufficient to check the validity of the corresponding equations of the overall approach.

2.2 BASIC DAMAGE EQUATIONS

One of the objectives of this research is the quantification of damage mechanisms

in metal matrix composites with a ductile matrix. This is performed in such a way as to

eventually isolate and evaluate the different types of damage that occur in these

materials. These modes of damage can occur simultaneously or in succession. Some of

these types include matrix damage, fiber damage, debonding, delamination, etc. In order

11



to achieve the anticipated quantification consistently, two different paths could be

followed as shown in Figure 2.1.

In the first (overall) approach, one considers damage in the overall composite

system as a whole continuum. In this way, the model will reflect various types of damage

mechanisms such as void growth and coalescence in the matrix, fiber fracture, debonding

and delamination, etc. More details about this approach are given in Chapter 3. It

should be noted that in this approach, no distinction is made between these types of

damage as they are all reflected through the fourth-rank overall damage effect tensor M.

This tensor is defined by the following transformation in the overall composite system

(proposed originally for metals by Kachanov [20]):

S= M:a (2.14)

The above equation is the basic damage equation that is used to derive the overall

approach. However, in the second (local) approach, one also needs to consider the damage

that the matrix and fibers undergo separately such as nucleation and growth of voids and

void coalescence in the matrix material, and fracture of fibers. More details about this

approach are given in Chapter 4. In this case, two additional fourth-rank matrix and

fiber damage tensors Mm and Mf are introduced that reflect all types of damage that the

matrix and fibers undergo. These two local (or constituent) damage effect tensors are

defined independent of each other in the matrix and fiber configurations as follows:

ir = M r:or (2.15)

Subsequently, the local-overall relations are used to transform these local effects to

the whole composite system. It is clear that the second approach does not account

explicitly for such damage mechanisms as debonding or delamination. It is also clear that

each approach has certain advantages and disadvantages. While the first approach

accounts for all types of damage in the composite system, it cannot distinguish between

12



them. In contrast, the second approach provides separate damage analysis of the matrix

and fiber materials, but lacks the ability to account for such interfacial damage

mechanisms as debonding or delamination.

Equations (2.14) and (2.15) represent the damage transformation equations for the

stress tensors. Similar transformation equations for the strain tensors can be obtained

only for the overall elastic strain tensor. Using the assumption of small elastic strains

and the hypothesis of elastic energy equivalence, one can follow the procedure described

by Kattan and Voyiadjis [281 and Voyiadjis and Kattan [19] to derive the following

relation:

M" -M-W: (2.16)

Using the same method and applying it to the matrix and fibers separately, one can

derive the following transformation equations for the local elastic strain tensors:

Em" = M M-T: em (2.17a)

S= M f-T:Ef (2.17b)

The corresponding transformation equations for the elastic and plastic strain rates

k' and C" are more complicated to derive. A brief description of their derivation is given in

the Appendix with the complete set of the equations. The interested reader is referred to

the work of Voyiadjis and Kattan [18,191 and Kattan and Voyiadjis [28,311 for a detailed

derivation of these equations.

2.3 TRANSFORMATION OF DEVIATORIC STRESSES

In the analysis of plastic deformation and especially when considering a yield

function, use is made of the deviatoric stresses instead of the total stresses in the

formulation since hydrostatic pressure has no effect on yielding in this work. Also,

backstresses (or shift tensors) are used in the modeling of kinematic hardening.
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Therefore, it is necessary to derive local-overall relations for these quantities before one

proceeds to formulate the constitutive model.

In this section, the transformation damage and composite equations of the previous

sections are given here in terms of deviatoric stresses. Starting with equation (2.14),

substituting for the total stresses in terms of deviatoric stresses c and t and simplifying,

one obtains:

= N: ,F (2.18)
j - ^0I

where the fourth-rank tensor N is given in terms of M as:

N M -M 12 ® (42:M) (2.19)

Similarly, using equation (2.15), one obtains:

Er = N r: r (2.20a)

Nr = Mr I (!2: M r) (2.20b)

The fourth-rank tensors N and Nr satisfy some useful identities that arise directly from

their definitions (equations (2.19) and (2.20b)). These identities are listed below:

12 :N = 0 • :Nr= 0 (2.21a)

N:N = M:N ; N r:Nr = M r:N r (2.21b)

Equations (2.18) to (2.21) represent the complete set of damage equations given in the

previous section in terms of deviatoric stresses. Next, one similarly derives another set of

deviatoric stress transformation equations based on the previous section.

The effective matrix and fiber deviatoric stress tensors ir are directly derived from

equation (2.6) as follows:

= r:6 (2.22)

where the fourth-rank tensor pr is given in terms of B•r as follows:
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r =r -12 (12:B r) (2.23)
- 3

In addition, the tensor pr satisfies the same identities given in equations (2.21), i.e.,

I2"pr = 0 ; r:pr= ,r: r (2.24)

,,2~ OV -V f O

Similarly, equations (2.7), (2.11a) and (2.12a) can be rewritten in terms of

deviatoric stresses. They take the following forms, respectively:

ym= Pmp:a (2.25a)

Tr r:d (2.25b)

•m= p mp: 0  (2.25c)

The fourth-rank tensors pmp, pr and pmp satisfy equations (2.23) and (2.24), i.e., they

have the same properties ab the tensor pr.

This section is concluded with the transformation equations for the backstress

(with deviatoric components q). It is assumed that the backstress satisfies the same

transformation equations as the Cauchy stress o. Therefore, the necessary equations are

listed below without proof:

0' B 'P: P Pm = B m P: (2.26a)

•mpmp:• ;a m = pmP:. (2.26b)

:M ; M M .:M  (2.26c)

&• = N:• E m N m:Pm (2.26d)

It should be noted that of all the deviatoric transformation equations given in this

section, equations (2.18), (2.19) and the first of (2.26d) are the only ones used in the

derivation of the two approaches described in this paper. The others are used appro-

priately in each model. For example, while equations (2.20) are used extensively in the

local approach, they are not used in the derivation of the overall approach. The opposite
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is true for equation (2.22) to (2.24). These points will be made clear later in the

derivations in Chapters 3 and 4.

2.4 BASIC PLASTICITY EQUATIONS

Before deriving the constitutive model for the damaged composite system, the basic

equations of plasticity are given. These equations govern the behavior of the undamaged

matrix, and thus they are given in the effective matrix configuration. In conjunction with

the assumption of an elastoplastic matrix material, the equations of the yield function,

flow rule, and kinematic hardening are presented in this section. These equations are

used in later chapters in the derivation of the constitutive model using both the local and

overall approaches.

The elastoplastic constitutive model for the matrix is based on a von Mises type

yield function f'(, m m ) defined in the effective matrix configuration as follows:

0 3 ~m ~ :? &~-~ 2 (.7
= - - -- m0f• _ - m).:(im _ Fm)_ C = 0 (2.27)

where oom is the uniaxial strength of the undamaged material. The plastic flow in the

effective matrix configuration is described by an associated flow rule in the flow:

"=Amaf m (2.28)

where A m is a scalar function introduced as a Lagrange multiplier in the constraint

thermodynamic equations for the matrix material. The multiplier Am is determined later

from the consistency condition f• = 0. In the proposed model, it is assumed that the

associated flow rule of plastic deformation holds only in the local (matrix) effective

configuration. As will be seen later, a non-associated flow rule will be obtained for the

damaged composite system.
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In order to describe kinematic hardening for the matrix, the Prager-Ziegler

evolution law [321 is used here in the effective matrix configuration.

Mm m _- M (2.29)

where P1m is a scalar function to be determined as follows. One assumes that the

projection of 1•m on the gradient of the yield surface f' in the effective matrix

configuration is equal to bC' where b is a material parameter to be determined from the

uniaxial tensile test [25,26]. This assumption is written as

af

b a af M(2.30)

a Fm arm

Substituting for im " and &m from equations (2.28) and (2.29), respectively, into

equation (2.30) and post-multiplying the resulting equation by afn/adm, one obtains the

following expression of jm in terms of Am:

,m = hA m  •n m (2.31)

*(Fn - &m a
aam

The relation in equation (2.31) is valid for any matrix yield function f. However, if the

yield function of equation (2.27) is substituted in equation (2.31), the following simple

relation can be obtained between 11rM and Am

1m = 3 b Am (2.32)

Therefore, once A!' is obtained from the consistency condition, one can use equation (2.32)

to determine •rn directly. The simple kinematic hardening rule of equation (2.29) is used

later to derive a general evolution law for the backstress for both the local and overall

approaches.
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Chapter 3

OVERALL APPROACH

In this chapter, the constitutive model for the damaged composite system is

derived using the overall approach. The model includes overall descriptions of the yield

criterion, flow rule, kinematic hardening, and the damage-elastoplastic stiffness tensor.

In the derivation, one considers the overall composite system as a whole continuum. This

is accomplished by first transforming the effective local quantities into effective overall

quantities, then applying the equations of continuum damage mechanics to the effective

overall configuration in order to obtain the overall damage quantities in the ciirrent

overall configuration. In this way, the resulting model will reflect various types of

damage mechanisms such as void growth and coalescence in the matrix, fiber fracture,

debonding and delamination. etc. On the other hand, no distinction is made among all

these types of damage as they are all displayed through one damage variable. This

damage variable is taken here as a fourth-rank tensor as defined in equation (2.14).

The use of equation (2.14) and in particular the overall damage effect tensor M will

definitely account for all types of damage that the composite system undergoes. However,

the main drawback of this approach is its nonlocality, i.e., it does not take into

consideration the local effects of damage in the matrix and fibers and their interface.

This is clearly shown in Figure 3.1a where an effective overall stiffness tensor Q is

derived in the first step. The damage equations are used in the second step to derive the

damage elastoplastic stiffness tensor D.

The first step in the derivation is to find a relation between the effective local

stress tensors and the overall stress tensor. This is accomplished by substituting equation

(2.14) into equation (2.6) and simplifying:
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Figure 3.1. Schematic diagram showing the steps in deriving
the damage elastoplastic stiffness matrix,
(a) overall approach, and (b) local approach.

FY,= C ':a (3.1)
0- AO IW

where the fourth-rank tensor Cr is given by:

SC r = r:M (3.2)

Next, one substitutes equation (2.14) into equation (2.22) to obtain the deviatoric

counterpart of equation (3.1) as follows:

71 = R r:a (3.3)

where the fourth-rank tensor Rr is given by:

Rr = Pr:M (3.4)

A relation between the two tensors Rr and QT is easily obtained by substituting equation

(2.23) into equation (3.4) and comparing the result with equation (34). Therefore, one

obtains:

"r =Cr 12 0 2 :Cr) (3.5)

Equations (3.1) to (3.5) are now used in the derivation of the constitutive model

within the context of the overall approach.

19



3.1 YIELD CRITERION, FLOW RULE, AND KINEMATIC HARDENING

0 The von Mises type yield function of the effective matrix configuration is now used

to derive a general yield criterion for the damaged composite system. Substituting

equations (2.22) and (2.26b)j, into cquation (2.27), simplifying, and using the idontity in

* equation (2.24)2, one obtains:

f 2 (-) B m :P m :o - 0 = 0 (3.6)

* Equation (3.6) represents the yield criterion in the effective composite system.

Substituting equations (2.14) and (2.26c)1 , into equation (3.6), simplifying and using the

identities in equations (3.2) and (3.4), one obtains:

f (- 3 ) H m "(c - P) - V 0 (3.7)

where the fourth-rank tensor Hm is given by:

H m = C m :R m = F m :M:P m :M (3.8)
ow W ^1 -0

The yield function of equation (3.7) represents the yield criterion for the damaged

composite system based on the overall approach. It is clearly anisotropic and includes the

effects of damage through the fourth-rank damage tensor M (see Table 3.1).

Table 3.1 Yield function for the damaged composite system.

3 M2f__ 3 (-_3).n m :(a-_3) -m0
2 H 0 =~

Overall approach Local approach

H*'= om : R' -- mA M : Pm : W H -M'"N' : B

Next, the flow rule is formulated for the damaged composite system. Substituting

equations (2.6) and (2.9) into equation (2.28) and simplifying, one obtains:

A= A.:7 (3.9)
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where the fourth-rank tensor multiplier A is given by

A = Am XmP-:1 m" (3.10)

Substituting equation (2.14) and (A2) into equation (3.9) and simplifying, one obtains:

= a.A +f (3.11)

where the fourth-rank tensor multiplier A is given by:

A= A:X- 1:M-1  (3.12)

and the additional term E" is given by

- X (3.13)

Equation (3.11) represents the flow rule in the overall approach (see Table 3.2). It

is clearly non-associated indicating a damaged material. Substituting equation (3.10) into

equation (3.12), the fourth-rank tensor multiplier A can be rewritten in the following

explicit form:

Table 3.2 Flow rule for the damaged composite system.

*i•'=A f V

Overall approach Local approach

A=Am X-1 :Amp-" TmP-" M 1  A XnmP I Xm-1 :Mm- :Bm-I
- x-1 : z - M x - : -

Xr X -i: m-X 1  -

=XTmX-I:AmP-':Bm M (3.14)

Next, one derives a generalized kinematic hardening rule for the damaged

composite system in the context of the overall approach. Dvorak and Bahei-EI-Din 16,71

proposed a kinematic hardening rule for the composite system without any damage

effects. This rule is used here in the effective composite configuration which is then
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transformed into the damaged composite system. Subtracting equation (2.26a),, from

equation (2.6) applied to the matrix, one obtains

am -_ r = m:( i_ ) (3.15)
Al - -1

Differentiating equation (3.15) with respect to time, substituting for am from equation

(2.7), simplifying and solving for j, one obtains

(14  m-:BmP):0 m-I :PM (3.16)

Equation (3.16) represents the kinematic hardening rule for the effective composite

system (with no damage effects) that was originally derived by Dvorak and Bahei-EI-Din

16,7]. The first term represents hardening due to matrix-fiber interaction, while the

second term is due to kinematic hardening of the matrix. It is clear that even if

kinematic hardening of the matrix is neglected, overall kinematic hardening of the

composite system still exists due to the interaction of the matrix and fibers as shown in

equation (3.16).

Substituting equations (2.22) and (2.26b)1 , for the matrix into equation (2.29), one

obtains the Prager-Ziegler evolution law for the effective matrix in terms of total stresses:

m = jPm  P m .( _ ) (3.17)

Finally, substituting equation (3.17) into equation (3.16), one obtains the generalized

kinematic hardening law for the damaged composite system:

(14 - m' :BmP): + Bm Bm-P m :(y ) (3.18)
1 .0 .0 J_ -o A

Rearranging the terms, the evolution law in equation (3.18) can be rewritten in a more

suitable form given in Table 3.3. It is clearly seen that the overall kinematic hardening

rule for the damaged composite system consists of a combination of a generalized Prager-

Ziegler rule and a generalized Phillips-type rule.
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Table 3.3 Kinematic hardening rule for the damaged composite system.

Overall approach Local approach

-1 . m -BMJ-M:02 (9 12 _B :'p): M= B m  :B m +ji m n m

+ jm M-1 :Fm-1  M

X = M 1 : N + Am m M:M) B= B m _B m- "IV ow ,o v 1W ., , •2

S+ Nm' :N m) B mp

1l = Mi-:(I2  I 2  B m:B mP) : M I 2  2 - :B m p

3.2 CONSTITUTIVE MODEL

In this section, the plasticity-damage model is formulated for the composite system

based on the overall approach. First, the linear elastic relations for the matrix and fibers

are written in their effective configurations as follows:

E= ,m:-' (3.19a)

T : (3.19b)

where the fourth-rank tensors Em and Ef are the constant elasticity tensors for the matrix

and fibers, respectively. They are given by the following relation for a linear isotropic

material:

r = Xr 12 0 12 + 2 Gr 14 (3.20)

where Xr and Gr are Lame's constants. Substituting equations (2.8) and (3.19) into

equation (2.1) and simplifying, one obtains the effective elastic constitutive relation for the

composite system:

=E:F (3.21)
IV -V I

where the fourth-rank effective elasticity tensor is given by:
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E=Zm m:Am +EfE(:Af 3.22

Substituting equations (2.4) and (3.9) into equation (3.21) and simplifying, one obtains:

SE:(Z - A:-.) (3.23)

In order to determine the fourth-rank tensorial multiplier A, one invokes the

consistency condition f 0. Therefore, one obtains:

C) f a" a+ (3 = 0 (3.24)

Substituting for the partial derivatives Af/0 and ýf/o from equation (3.6) into equation

(3.24) and simplifying, one obtains:

Q:(a-13):B m '.P: T: A-:

- pm Q: (i- P): B m'P m(FY - ) =0 (3.25a)
• , ., ., .-, - - ~ ' o

0 _

where the fourth-rank tensor Q is given by:

=3 (Bm:Pm +': mP-) (3.25b)

Examining equation (3.25a), one concludes that a relation between •jm and A is needed.

This is done indirectly by substituting equation (2.32) into equation (3.10) to obtain:

A = 5m A- rmap : B_ m (3.26)" 3b - "W

Substituting equation (3.26) into equation (3.24), utilizing equation (3.6) to obtain the

partial derivative af/q and solving for Am, one obtains the following expression after

performing some lengthy algebraic manipulations:

Am T:E:• (3.27)

where the second-ranK tensor 'T is given by:
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T = (U__ ).__:__m-_:__mp (3.28)
* (6-P):9:B m-.:[BmP:__.:AmP-':B m-I:Q + 3 b P m :(H_8-)

Substituting for Am from equation (3.27) into equation (3.10) and simplifying, one obtains

the following expression for A:

A = (T:E:i) AmP-'.B9m-1  (3.29)

Finally, one substitutes for A from equation (3.29) into equation (3.23) to obtain the

effective elastoplastic constitutive equation for the composite system:

D:T (3.30)

where the overall effective elastoplastic stiffness tensor D is given by

= - 1  ::( -: )i ® (T: E) (3.31)
J_ - '% ^N .. ^0 ^

The second step of the derivation consists of transforming the constitutive equation

(3.30) from the effective configuration to the damaged configuration of the composite

system. In this step, damage is introduced in the composite system in the context of the

overall approach. This part of the derivation is systematic and has been detailed

previously for metals by the authors 119]. It suffices to say that by substituting equations

(2.4), (2.14), (Al) and (A2) into equation (3.30) and performing extensive algebraic

manipulations, one arrives at:

S= D:t + G (3.32)

where the four-rank overall damage-elastoplastic stiffness tensor D and the second-rank

tensor G are given by:

D = 0-_:1 )X (3.33a)

G = 0 D:Z (3.33b)

and the fourth-rank tensor 0 is given by:
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: :a g a

0 =M + 2+ D:(M-T: E-1 - X: E-1
aL ag ag .1 ov~ OV

ag ag

-M-T _ a ag, :M-Tg-:E 1 ) (3.34)
ao a. L -gag i -

V -- 7 : 5- • ®a"E 3.

In equation (3.34), the quantities P, [3, L, and g are damage related parameters that are

discussed later in Chapter 5. Equation (3.32) represents the elastoplastic constitutive

relation (see Table 3.4) for the damaged composite system based on the overall approach

to damage in composite materials. Table 3.5 shows a complete listing of the yield

function, flow and kinematic hardening rules for this approach.

The governing constitutive equation (3.32) can be simplified by eliminating the

additional term G. This can be done by substituting for D and G from equations (3.33),

then further substituting for X and Z from equations (A3) and (A4). This is followed by

substituting for a3 from equation (A7), for M.T from equations (A8) and (A9), and for

from equation (5.10). After some extensive algebraic manipulations, the final result is

obtained as follows:

-=D* : i (3.35)

where the new elastoplastic-damage stiffness tensor is given by:

D* = (0"' : D : V 1 ) : X (3.36)

and the fourth-order tensor V is given by:

V 3 (- ' : "E "M •-• :(a g M -T -- g ag
a,. a 1 .M-aT . Dg -_

® N (a - [) (3.37)
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In equation (3.37), the scalar parameter a1 is defined in the Appendix. Equation (3.35)

• represents the general constitutive equation for the damaged composite system based on

the overall approach.

Table 3.4 Elastoplastic constitutive relation for the
* damaged composite system.

Overall approach Local approach

D =0-1.: X D =cm Amp:D m + cf A f: Ef
G 0-1 D_ "•m + Cff A

Table 3.5 Explicit expressions for the yield function, flow and kinematic hardening rules

in the three configurations Cm, C, and C according to the overall approach.

Configuration

Rule Local Overall Overall

cm C C

f - (,_a m ). - m. f= -- Hf(a- )

Yield 2 2 2-
Function

- M -- -- - 2 2m2
(T -m  o ) - o (o-0 -2 ) : (_-a m_- _o

Am afm h f a?•=]•"•f+

Flow Rule Em' A -' A : =A

Kinematic (1.. - = 2 i2" ( X- P)
H ardening a m  = m  ( ,m.a m)~• "2 m2 . . . . .^I

Rule -- -. +fn'o+ 1 Bn : pm- Pm .(2 _
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Chapter 4

LOCAL APPROACH

In this approach, one considers separately the local damage that the matrix and

fibers undergo such as nucleation and growth of voids and void coalescence for the matrix,

and fracture of the fibers. Therefore, two fourth-rank damage tensors Mm and Mf are

considered as shown in equation (2.15). The tensor Mm encompasses all the pertinent

damage related to the matrix, while the tensor Mf reflects the damage pertinent to the

fibers. However, no explicit account is made for such damage mechanisms as debonding

and delamination. Nevertheless, these damage mechanisms can be conveniently

incorporated in this theory where debonding can be introduced as part of the tensor M,

while delamination can be represented by the tensor Mm. Alternatively, two new damage

tensors can be defined to reflect these two mechanisms, but this is beyond the scope of

this work.

The basic feature of this approach is that local effects of damage are considered

whereby they are described by the matrix and fiber damage tensors. Subsequent to this

local damage description, the local-overall composite relations are used to transform the

local effects to the whole composite system. These two steps are schematically shown in

Figure 3.1b where two modified stiffness tensors D'm and Ef are first derived for the

matrix and fibers. This is then followed by formulating the damage-elastoplastic stiffness

tensor D for the composite system.

Before proceeding to derive the constitutive model for this approach, one first

needs to derive explicit expressions for the damaged stress and strain concentration

factors in terms of the undamaged factors and the damage variables. Substituting

28



equations (2.14) and (2.15) into equation (2.6), simplifying and comparing the result with

equation (2.1la), one obtains:

Br = Mr-):B r:M (4.1)

Equation (4.1) represents an explicit formula for the elastic damaged stress concentration

factors Br in terms of the undamaged factors Ar and the damage tensors Mr and M. Once

the undamaged stress concentration factors are determined, one can use equation (4.1) to

find the damaged stress concentration factors.

Similarly, by repeating the above procedure for the strains, one can obtain the

corresponding transformation equations for the elastic strain concentration factors. This

is accomplished by substituting equations (2.16) and (2.17) into equation (2.8) and

comparing the result with equation (2.11b). Therefore, one obtains:

A r = M r:A r:M- 1  (4.2)

Using equation (4.2), the damaged elastic strain concentration factors Ar are determined

from the undamaged factors and the damage tensors. In the next two subsections, the

transformation equations (4.1) and (4.2) play an important role in the derivation of the

constitutive model for the damaged composite system within the framework of the local

approach.

4.1 YIELD CRITERION, FLOW RULE, AND KINEMATIC HARDENING

In deriving the yield function for the damaged composite system, the first step

consists of transforming f' into a function fP in the damaged matrix configuration. This

is done by substituting equations (2.20a) and (2.26d)2 into equation (2.27), simplifying and

using the identity in equation (2.21b)2. Therefore, one obtains:

fm =_3 _(PM _ -m) : M m :N m : (o m _m ) _ •m2 =0 (4.3)
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The second step involves transforming f' into an overall yield function f for the damaged

* composite system. Substituting equations (2.11a) and (2.26a)2 into equation (4.3) and

simplifying, one obtains the overall yield function of anisotropic type having the form

given in equation (3.7). However, in this case, the fourth-rank tensor H' is given by:

H _M m:N m:B m'B m (4.4)

Next, the overall flow rule for the damaged composite system is derived.

Substituting for im" from equation (A10) and for am from equation (2.15) into equation

(2.28) and simplifying, one obtains:

•m=•.•m+m0 (4.5)

where the fourth-rank tensor multiplier A•m and the second-rank tensorem" are given by:

Am = Am Xm : Mm-I (4.6a)

• m" = _ X m Z m (4.6b)

The flow rule given in equation (4.5) is clearly non-associated. This is mainly due

to the incorporation of damage in the matrix. Substituting equations (2.12b) and (2.11 a)

into equation (4.5) and simplifying, one finally obtains the overall non-associated flow rule

for the damaged composite system in the form given by equation (3.11). However, in this

case the fourth-rank tensor multiplier A and the second-rank tensor •" are given by:

* :o"m :B m' (7

A,, mp m .Amp- m (4.7b)

Equations (4.7) can be rewritten in a more explicit way by using equations (4.6).

Therefore, one obtains:

*=Am Amp' X m :Mm • B m (4.8a)

X - I-
E x Z m : AmP (4.8b)
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The damage effects show clearly in the non-associated flow rule of equation (3.11) through

* the tensors M m , Xm , and Zm.

Next, the generalized kinematic hardening law is derived for the damaged

composite system. Starting with the Prager-Ziegler kinematic hardening law of equation

* (2.29) and substituting for 6m and tm from equations (2.26d)2 and (2.20a), one obtains:
•m = -Em _(m 2®I+N M -1 •

11M jm2 j 12 +NM: m) 01  (4.9)

Subtracting equation (2.26a)2 from equation (2.11a) and differentiating the resulting

equation, one obtains:

r - ým =Bm : (6 -3) + f3m (4.10)

• Substituting equation (2.11a) into equation (4.10) and solving for 1, one obtains:

(B=(m : Bm Bm :BmP). : + Bm .m:
" . .. (4.11)

-B'm- . B m :BmP+BmP:Bm-

Finally, substituting equation (4.9) into equation (4.11), one obtains the generalized

kinematic hardening rule in the form:

* 1= "-x:13 + Fl : & (4.12)

where the fourth-rank tensors yj, X and H1 are given in the right side of Table 3.3. The

first two terms in equation (4.12) represent a generalized Prager-Ziegler rule while the

* last term represents a Phillips-type rule.

4.2 CONSTITUTIVE MODEL

Formulating the constitutive model using the local approach consists of first

deriving two separate constitutive equations for the damaged matrix and fibers then

combining them into one overall constitutive relation for the whole composite system.

Starting with the two local linear elastic relations for the effective matrix and fibers of

equations (3.19), one obtains the local response of each constituent in the form 118,331:
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am = E` m im' (4.13a)

Ef E (4.13b)

where the local elastic tensors Em and Ef are given in terms of the effective elasticity

tensors Pm and tf by:

Er Cr -_ : E r : M r (4.14)

In this case, the overall response of the damaged composite system is given by [22,271

6 = E : e (4.15)

where the overall "damaged" elasticity tensor E is given by:

E ==cmAm Em +cfAf:Ef (4.16)

Next, one is ready to undertake the second step in the derivation which involves

the incorporation of damage in the elastoplastic matrix and elastic fibers. Starting with

an effective elastoplastic matrix constitutive equation of the form

-M = m :m (4.17)

the fourth-rank effective matrix elastoplastic stiffness tensor Dm is given by [211

jm = 1_ mf mJ®m . fm (4.18)

Q,%. (&a .

and the scalar Q is given by:

Q - .E m - b L Tm - Zm.) (4.19)

aim a~m am - a, M
t

aom

Utilizing the damage theory for solids proposed recently by Voyiadjis and Kattan [191, one

uses equation (4.17) to obtain the transformed constitutive equation for the damaged

matrix in the form:
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D m . im + G m  (4.20)

* where the fourth-rank tensor Dm and the second-rank tensor G' are given by:

Dm- = : ::Xm (4.21a)

G m = Om -1 D m :Z m  (4.21b)

and the fourth-rank matrix tensor 0 m is given by:

Om m  g m  m _gm

0 M ~ M t 0am a-Y

aL m a g m .g m

ap, am aam

+Dm:(Mm T .Em 1  Xm:Em

m AM

-T am aam arý -1T-
* -~MM  -------._ _____ :M M  aa m :E M  ) (4.22)

f Lag m agm

In equation (4.22), the quantities m, P3m, Lm, and gm are matrix damage-related

parameters that are discussed in Chapter 5.

The final step in the derivation consists of transforming the local constitutive

equations for the damaged matrix and fibers into one single overall constitutive equation

for the damaged composite system. This is accomplished by substituting equations (4.13b)

and (4.20) into equation (2.2) and simplifying. Finally, one obtains the general

constitutive relation for the damaged composite system in the form

6 = D : + G (4.23)

The fourth-rank damage-elastoplastic stiffness tensor D and the second-rank tensor G are

given by:

D = cm Amp : D m + c f A f: E f (4.24a)
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G =c'aGm +cfA':Ef (4.24b)

The damage-elastoplastic stiffness tensor D is clearly written in terms of the

stiffness tensors of the two constituents and includes the effects of damage. It should be

noted that the overall constitutive equation contains the additional term G which is

directly attributed to the incorporation of damage in the constitutive model. Table 4.1

shows a complete listing of the yield function, flow and kinematic hardening rules for this

approach.
0

Table 4.1 Expressions for the yield functions, flow and kinematic hardening rules

in the three configurations Cm, Cm, and C according to the local approach.

Configuration

Rule Local Overall Overall

CM Cm C

fm 3 (T m ). fm=(,mP):r).Mm.N' f=(a.n).Hm.

Yield 2 - - A

Function - - m2 -m2
(T a -m 2  (0) oo

---.. ." "--
0

Flow Rule e m'=A m  -m im" =Am  - + m m"
"V •m ' - m "

Kinematic - P " • - •
Hardening am = m (,im - am) - " "

Rule + N m +Nm'. +f l:

At the present time, the authors see no way of simplifying the general constitutive

equation (4.23). The additional term G has a very complicated expression and its elimina-

tion is not readily attainable. One explanation for the existence of this additional term in

the equations of the local approach could possibly be due to the consideration of local

effects in the damage theory. Such effects are not considered in the overall approach thus

obtaining relatively simpler equations for that approach.
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Chapter 5

DAMAGE EVOLUTION

There are several approaches in the literature on the topic of damage evolution and

the proper form of the kinetic equation of the damage variable. Kachanov [201 proposed

an evolution of damage based on a power law with two independent material constants.

However, adopting such a law here for each of the matrix and fiber materials would leave

four independent material constants to be determined. In addition, the resulting overall

kinetic equation for damage evolution may not be solvable. Therefore, a more rational

approach based on energy considerations will be adopted here.

The approach followed in this project will depend on the introduction of a damage

strengthening criterion in terms of a function g. In this chapter, general evolution

equations are described for damage in metal matrix composites. The derivation is based

on extremum principles and is thermodynamically consistent. First, the general evolution

equations are derived, then they are solved for the special case of a uniaxially-loaded

unidirectional fiber-reinforced thin lamina undergoing elastic deformation.

5.1 GENERAL DAMAGE EVOLUTION

The overall damage effect tensor M depends on the second-rank overall damage

tensor 0. Similarly, the local damage effect tensors Mr depend on 4r. Therefore, in order

to describe damage evolution, one needs to determine the appropriate kinetic equations

for the tensors , and pr In order to do this, one introduces the generalized

thermodynamic forces y and yr that are associated with 4 and 0', respectively. These

generalized forces are defined by [271

y U r alUry -- y - (5.1)
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where U and Ur are the overall and local free energies, respectively. The definitions given

* in equation (5.1) imply that 4", and tr:yr represent the powers dissipated due to damage

in the overall and local configurations, respectively. The criterion for damage evolution

used here is that proposed by Lee, et al. [241 and is given by the function g(y,L) defined

by:

1
g(y,L) = Y:J:Y - L(0) = 0 (5.2a)

where L(U) is a scalar function of the overall scalar damage parameter P, and J is a

constant fourth-rank tensor given previously by Lee, et al. [241. Similarly, two other

damage functions g' and gf can be defined for the matrix and fibers as follows:

g r(y r,L r) Y r:- j :y r: - L (pr) = 0 (5.2b)

where J is a fourth-rank tensor that is symmetric and isotropic. This tensor is

represented by the following matrix [24]

1pj~i 0 0 0

l 1 0 0 0 0
* J1 }il 0 0 0

0[J] = PV(5.3)
0 0 0 2(1-pi) 0 0

0 0 0 0 2(1-1j) 0

0 0 0 0 0 2 (l-p)

* where p is a material constant satisfying - 1/2 < p 5 1. In equation (5.2a), Po represents

the initial damage threshold, LUP) is the increment of damage threshold, and P is a scalar

variable that represents overall damage. The explicit relation between the fourth-rank

* damage effect tensor M and the second-rank damage tensor I has been studied previously

by the authors [18,331.

During the process of plastic deformation and damage, the power of dissipation fl

is given by [291:

l-l= o:"+ y -- L1 (5.4)
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In order to obtain the actual values of the parameters o, 0 and P, one needs to solve an

extremization problem, i.e., the power of dissipation [1 is to be extremized subject to two

constraints, namely f (z, a, 0) = 0 and g (y, L) = 0. Using the methods of the calculus of

functions of several variables, one introduces two Lagrange multipliers X1 and 22 and

forms the function xy such that

n - X1 f - X2 g (5.5)

The problem now reduces to that of extremizing the function 14. Therefore, one

uses the necessary conditions aI/ai = 0, a-W/ly and a-Wu/L = 0 to obtain:

f - 0 (5.6a)

-2 .g =0 (5.6b)ay

- 3 2 'g" = 0 (5.6c)
aL

Next, one obtains from equation (5.2a) that 3g/aL = - 1. Substituting this into equation

(5.6c), one obtains X2 = ý. Thus, ' 2 describes the evolution of the overall damage

parameter I which is to be derived shortly. Using equations (5.6a) and (5.6b) and

assuming that damage and plastic deformation are two independent processes, one

obtains the following two rate equations for the plastic strain and damage tensors:

X'= . f (5.7a)

- .g (5.7b)ay

The first of equations (5.7) is the associated flow rule for the plastic strain introduced

earlier in equation (2.28), while the second is the evolution of the damage tensor. It is to

be noted that il is exactly the same as the multiplier A derived earlier. However, one

needs to obtain explicit expressions for the multiplier f5. Now one proceeds to derive an
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expression for 3. This is done by invoking the consistency condition g(y, L) = 0.

* Therefore, one obtains:

ag ag:y +-L =0 (5.8)-jy a L

Substituting for the partial derivatives of g from equation (5.2) into equation (5.8), and

using L = 3D), one obtains

=J:Y "(5.9a)

Equivalently, the above equation can be rewritten in the following form if the function g is

rewritten in terms of a and ,.

• •_ag .

_ _ __ _ _ (5.9b)
- •J

Finally, by substituting equation (5.9a) into equation (5.7b), one obtains the general

evolution equation for the damage tensor 0 as

J "y: " ag (5.1Oa)

Equivalently, the above evolution equation can be written as

S-g:

_ _ _ _a Og (5.lOb)a~ :L _ )g 3 g a"o

The evolution equation (5.10b) is incorporated in the constitutive model in Chapters 3 and

4 for the overall and local approaches, respectively. It should be noted that equation

(5.10a) is based on the damage criterion of equation (5.2a) which is applicable to

anisotropic damage. However, using the form for J given in equation (5.3) restricts the

* formulation to isotropy. Similar evolution equations could be derived for both the matrix

and fiber damage variables.
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5.2 UNIAXIALLY-LOADED UNIDIRECTIONAL LAMINA

Consider a unidirectional fiber-reinforced thin lamina that is subjected to a

uniaxial tensile force T along the xl-direction as shown in Figure 5.1. The lamina is made

of an elastic matrix with elastic fibers aligned along the x1-direction. The x2- and x3-axes

* are assumed to lie in the plane of the lamina. Let dS be the cross-sectional area of the

lamina with dSm and dSf being the cross-sectional areas of the matrix and fibers,

respectively. In the fictitious undamaged configuration, let the cross-sectional areas of the

0 lamina, matrix and fibers be denoted by dS, dS' and dSr, respectively. Since the lamina

strictly consists of a matrix and fibers [331, it .s clear that dS' + dSf = dS, dS' + dS=

dS, dS < dS, dSm < dSm and dS'< dS'.

The overall stress, strain and damage tensors a, F and 0 for this problem can be

represented using the following vectors

*0
with 0 , {E5I, *- 02 (5.11)

0 -3 0 :3

*with similar vector representations for their corresponding effective and local

counterparts. The uniaxial stress a appearing in equation (5.11) is clearly given by a

T/dS with the uniaxial effective stress a given by a = T/dS. The overall damage variable

• ¢0 is defined by 1201

01 dS - d (5.12)

dS

* It is clear from equation (5.12) that 01 takes the values between 0 for undamaged

material to 1 for (theoretically) complete rupture. However, the actual value ocr where

failure occurs is less than 1 and satisfies 0 < < ¢cr < 1. Two local damage variables 0m'

and 0 f Ican be analogously introduced and defined by:
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(a) Damaged Lamina (b) Fictitious Undamaged Lamina

Figure 5.1 Damage due to uniaxial tension.
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r dS= rd§r (5.13)
dSr

It follows directly from equation (5.13) that 0 ! 5 1. Using equations (5.12) and (5.13)

along with the area relations discussed in the beginning of this section, one can easily

derive the following relation between the local and overall damage variables:

ý1 = C m ým + C ff• (5.14)11 1

It should be mentioned that the uniaxial local and overall stresses a, em and of

satisfy a similar relation to that of equation (5.14) which is given in tensor form. The

relation between the overall stress a and its effective counterpart a can be easily shown to

be given by

a = a (5.15)
1 - 01

Using equations (2.1) and (2.2), one can assume the local stresses to be given by:

Or (5.16)
1 -

In view of equation (5.15), it is clear that the relation (5.16) satisfies the require-

ments given by equation (2.1). Comparing equations (5.15) and (5.16) with the general

transformation equations (2.14) and (2.15) and considering the notation of equation (5.11)

for this problem, the damage effect tensors M, M' and Mf can be represented by the

following matrices:

1 0 0

M - 0 (5.17a).W 1 - 0 2
1~

0 0 1
1 -03
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1 0 0

*r

0 0 (5.17b)
- 1

0 0 1
1-03

It should be mentioned that the matrix representation of the damage effect tensor

M of equation (5.17a) applies only to the problem of uniaxial tension considered here. For

a general matrix representation of the tensor M, the reader is referred to the recent paper

by Voyiadjis and Kattan [19].

The overall elasticity tensor E can be represented by the following matrix where an

orthotropic material is assumed.

1 -V 2 1 -V 3 1

*El E2  Eý3

-V12  1 -V 3 2
E -1 -= -•2 1 -• (5.18)

-Via -V 2 3  1

L El E2  E3
Using the representations of M and E of equations (5.17a) and (5.18), and substituting

"^0 IV

them into the corresponding transformation equation, one obtains the following matrix for

the damaged elasticity tensor E:

1 -V 2 1  -V3 1
1•(I-) E2(1 -OI1)(-02) E3(1 -OIX1 -3)

-V12 1 -V32

E - _ - (5.19)"EIO1( -O1X1 -02) F-k(1 -022 E3(0 -02X1 -03)

-V 13  -V 2 3  1

SEI(1I1i)(1-0 3 ) E 2(1-4 2 )(1-0 3 ) E3(1- 3 )2
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Considering a matrix representation for E-1 similar to that of equation (5.18) but

with all quantities replaced by barred quantities, and comparing it with the matrix in

equation (5.19), one obtains the following transformation equations for the overall elastic

properties:

Ei = Ei (1 -4i) 2 , = 1, 2, 3 (no sum) (5.20a)

1 - O
_ 1 - ,i ij = 1, 2, 3 (no sum) (5.20b)

Next, one uses the transformation equation (4.1) for the phase stress concentration

factors, and substitutes for the damage effect tensors from equations (5.17) to derive the

following matrix representation for the damaged phase stress concentration factor Br:

1 •1 1 -2 1 -)3

B2 _12_ 1 13 13_

1-_B_ - r 1 -2 (5.21)
01 2 22 1 B2 3" 4 1r3 1-2 1 -43

rr 14
1-BB31 1-- - r1-r
0 321-01"-• 3 1 03-- B33

where the terms B'.. are the elements of the matrix representation of Br.

Similarly, one uses the transformation equation (4.2) for the strain concentration

factors to derive the following matrix representation for the damaged phase strain

concentration factor Ar.

1- ri r 1-01 - r 1-01i- r
1 11 - A12 A13

r2r r 1(
21 2 A03

1 -02 - r1-02 - r 1-02 -r
A r _ - A21 A22 -A23 (5.22)

0 1-) 12 -3

1-03 ý4 r 1 -3 4 A r 1-43 -r
r - 3r

1-0) 11)2 r~)1- 31I-ý 2 I3
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where the terms A'. are the elements in the matrix representation of Ar.

Finally, one writes the transformation equations for the volume fractions cm and cf.

Using the definitions of cm and cf as area fractions for this problem, along with equations

(5.12) and (5.13), one obtains:

1 -r¢
-r = C r (5.23)

One can use equation (4.14) to derive transformation equations for the local elastic

properties. However, the resulting equations are similar to equation (5.20) with super-

scripts "m" or "f' and will not be listed here.

In order to characterize damage evolution for this problem, one starts with the

elastic strain energy of the damaged composite system as follows:

1= 2 1 (1 - 1)2 (5.24)

Therefore, the incremental strain energy dU is given by

dU = E(I - 01)2 -1 dE, - E(I -_1) P2 do1  (5.25)

The generalized thermodynamic force yl associated with the overall damage variable 01 is

thus defined by

_U E(-1 2 (5.26)

Let g(yl,L) be the damage function (criterion) as described in the previous section, where

L = L(U) is a damage strengthening parameter which is a function of the overall damage

parameter P. For this problem, the function g takes the following form:

g 2=9 Y -_ L(P)-=_0 (5.27)

In order to derive a normality rule for the evolution of damage, one first starts with the

power of dissipation FI which is given by
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H = ylol - L P (5.28)

where a superposed dot indicates material time derivative. The problem is to extremize n1

subject to the condition g = 0. Using the theory of functions of several variables, one

introduces the Lagrange multiplier i and forms the function H(y1,L) such that

H = nI-- g (5.29)

The problem now reduces to extremizing the function H. For this purpose, the two

necessary conditions are ZH/ayI = 0 and aH/aL = 0. Using these conditions along with

equations (5.28) and (5.29), one obtains

a g ___ (5.30a)

X ag (5.30b)aL

Substituting for g from equation (5.27) into equation (5.30a), one concludes directly that

S= •. Substituting this into equation (5.30a), along with equation (5.27), one obtains:

;I = ýyY (5.31)

In order to solve the differential equation (5.31), one must first find an expression for the

Lagrange multiplier X. This can be obtained by invoking the consistency condition g 0.

Therefore, one obtains:

-g y g L =0 (5.32)

Substituting for ag/Yly and ag/aL from equation (5.27) and for L = 3 (iaLa3) (from the

chain rule), and solving for 3, one obtains:

S-_ yli (5.33)

substituting the above expression of X into equation (5.31), one obtains the kinetic

(evolution) equation of overall damage:
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t 1 = 2' (5.34)

with the initial condition that 01 = 0 when y1 = 0. The solution of equation (5.34) depends

on the form of the function L($). For simplicity, one may consider a linear function in the

form L(U) = cp + d, where c and d are constants. This is motivated by the hardening

parameter defined for isotropic hardening in plasticity as "jij '"ij where '"ij is the

plastic component of the strain rate. The equivalent damage strengthening parameter

can be analogously expressed as 60 or simply P3 whereby giving a linear function in

as discussed above. Substituting this into equation (5.34) and integrating, one obtains the

following relation between the overall damage variable 01 and its associated generalized

force yl:

3
¢ Y1- (5.35)

3c

The above relation is shown in Figure 5.2 where it is clear that 01 is a monotonically

increasing function of yr.

Next, one investigates the overall strain-damage relationship. Differentiating the

expression of y, in equation (5.26), one obtains:

Y* = E F1 [-101 - 2i1(1 "- 01)] (5.36)

Substituting the expressions of y1 and yl of equations (5.26) and (5.36), respectively, into

equation (5.34), one obtains the strain- damage differential equation:

- F¢ I (I - *i)2 [2•i(I - ý1) - F- 1; (5.37)

The above differential equation can be solved easily by the simple change of

variables x = F1
2 (1 - 01) and noting that the expression on the right-hand side is nothing
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Figure 5.2 Relation between the overall damage variable 01
and its associated generalized force for yr.
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but E3 x2 x. Performing the integration with the initial condition that 01 = 0 when el = 0

along with the linear expression of L(U), one obtains:

01 =g C6 (5.38)
(1 -_ 1)3 = 3- 1

One should note that an initial condition involving an initial damage variable 01° could

have been used, i.e., 01 = 010 when -1 = 0. The strain-damage relation of equation (5.38)

could easily have been obtained by substituting the expression of y, of equation (5.26)

directly into equation (5.35). However, it is preferable to derive it directly from the

strain-damage differential equation (5.37) without the use of the generalized force yr.

One can now easily incorporate local damage evolution for the composite based on

the previous discussion. One assumes that there exist two local damage strengthening

criteria gm(yim, Lm) and gf(ylf, Lf) having the same forms as that of equation (5.27),

where ylm and yl are the generalized thermodynamiL forces associated with 0 1m and 01,

respectively, and Lm and Lf are the local counterparts of L. Linear expressions are also

assumed for L" and Lf such that L' = c1 Pm + d, and Lf = c2 Pf - d2, where 0m and Of are

local counterparts of 0 and cl, c2, dl, d2 are constants.

Assuming matrix and fiber damage evolution laws simila.- to that of equations

(5.34) and (5.35), one can write

1 = 3c, (5.39b)

Substituting equations (5.35) and (5.39) into equation (5.14) and simplifying the result,

one obtains the local-overall relation for the generalized thermodynamic force associated

with the damage variable:

48



Y c (y- T 3 1 - (y1 )j (5.40)
•Cl C2

Finally, using the above equation along with the fact that yl = ag/lyl and similar

expressions for y1 m and ylf one obtains:

3 -m -;g I3cf g

a5Y, l a 1M 2 y1 =C 1  
J (.1

• Equation (5.41) is a nonlinear partial differential equation that represents the local-

overall relation for the damage strengthening criteria for the matrix, fibers and the

overall composite system.
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Chapter 6

MECHANICAL TESTING

The mechanical testing for this project is divided into two subtasks: (1) Specimen

Design and Preparation, and (2) Mechanical Testing of Specimens. As a means of

ensuring a collection of valid test data, each of these subtasks was performed with the

most current available equipment and testing procedures.

6.1 SPECIMEN DESIGN AND PREPARATION

As reported previously the material investigated is a titanium aluminide SiC

46 continuous reinforced metal matrix composite. As a means of enforcing quality assurance,

all manufacturing and cutting of the specimens were done by professional agencies.

Textron Specialty Materials developed and manufactured the SiC fibers, in addition to

0 manufacturing the initial plate specimens. Typical properties of the SiC fibers as

provided by Textron Specialty Materials are shown in Table 6.1.

0 Table 6.1 Typical properties of silicon carbide fibers.

Diameter 5.6 mils or 0.0056 in

Density 0.11 lb/in 3

0 Tensile Strength 500 ksi

Modulus 58 x 106 psi

Poisson's Ratio 0.22

CTE 2.3 x 10-6 ppm-0 C @ RT

Additionally, the fibers have good wetability characteristics for metals, which

should minimize the chances of voids being induced during the manufacturing process.
0

The matrix material (titanium aluminide foil) was produced by Texas Instruments.
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Typical properties of the Alpha 2 type aluminide foil as provided by Textron specialty

Materials are shown in Table 6.2

Table 6.2 Typical properties of Ti-14A1-21Nb(a 2 )
matrix foil.

Ti 63.4%
Composition Al 14.4%

Nb 22.1%

Tensile Strength 65 ksi

Modulus 12 x 106 psi

Poisson's Ratio 0.30

The material data provided for the matrix foil is reported as being preliminary as

the manufacturer is optimizing the composition for stability and bonding with SiC fibers.

Nevertheless, Textron Specialty Materials reports that the composite material performs

well at elevated temperatures.

Textron Specialty Materials utilized hand layup techniques to fabricate two

different specimen layups [i.e., (0/90). and (± 45)j from SCS-6 SiC fiber mats and Ti-

o 14A1-21 Nb(a2 ) foils from ingot material. Consolidation was accomplished by hot-

isostatic-pressing (HIP) in a steel vacuum bag at 1850°F ± 25' under 15 ksi pressure for

2 hours. C-scans were performed on each plate specimen (Figure 6.1 and 6.2) to evaluate

the consolidation and fiber alignment of the finished product. Results indicate very good

consolidation for the crossply specimen (0/9 0 )s with some fiber misalignment along the

plate edges. However, the (t 45). plate has generally good consolidation with significant

occurrences of fiber misalignment or fiber bundling on the interior of the plate as well as

the edges.

As a result of fiber misalignment and differences in coefficients of thermal

expansion for the fiber and matrix, noticeable warpage was found on each of the plate
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Figure 6.1 C-scan of (0/90), laminate specimen (performed h%
("incinnati 'restiMg Laboratories, Inc. j.
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• Figure 6.2 C-scum of (:t 45). laminate specimen (performed by

Cincinnati Testing Laboratories, Inc.).
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specimens. This warpage is identified on the topographical maps of relative elevations in

* Figures 6.3 and 6.4 for each of the plate laminates. However, since each of the laminates

are balanced symmetric, basic lamination theory [34,351 predicts that the laminates

should not experience such noticeable warpage from manufacturing. It is believed that

• these specimens were warped as a result of the slight fiber misalignment, too fast a cool-

down period, or removal of the specimen from the vacuum bag too soon.

Nevertheless, each of the laminates was machined by Cincinnati Testing

0 Laboratories, Inc., to produce six test specimens of type 1 (Figure 6.5) and three test

specimens of type 2 (Figure 6.6). Specimen locations were selected in order to minimize

the effects of the laminate warpage on the test specimens. Locations selected induced

negligible residual stresses and did not produce any damage to the fiber or matrix. This

was verified through C-scans of the individual test specimens after machining. Sample C-

scans for one specimen from each layup are shown in Figures 6.7 and 6.8 to illustrate this

fact. These are gray scale images, which are interpreted as the darker the image, the

better the consolidation and fiber alignment. Also, the scans correspond identically to the

* scans performed by Cincinnati Testing Laboratories, Inc., on the original plate specimens.

This implies that the machining of the individual test specimens did not induce any

damage. To further minimize manufacturing damage, all machining was done with

diamond tooling, except for the center notch cut in specimen type 2, which was produced

using electrode discharge machining. End tabs were tack welded onto the ends of each

specimen for gripping purposes, taking extreme care not to alter any of the material

properties of the specimen.

Specimen type 1 is used to obtain tensile properties and damage information in

developing the damage equations. The dogbone type specimen has been used successfully

by previous researchers [361 and demonstrated specimen failure within the test region
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Figure 6.3 Relative elevation for (0/90)8 laminate showing manufacturing distortion
(performed by Cincinnati Testing Laboratories, Inc.).
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Figure 6.4 Relative elevation for (t 45). laminate showing manufacturing distortion
(performed by Cincinnati Testing Laboratories, Inc.).

56



0

I In

S~

05



G )7" 12"

0.059"
(15mm)SIot

21/2

0

Figure 6.6 Initial crack tensile specimen type 2.
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* Ultrasonic1 C-Scan
Sample no. 549L-6
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Amplitude of 3rd backwall echo
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Ultrasonic C-Scan
0 Sample no. 549L-6
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Figure 6.7 Typical C-scan of test specimen with (0/90),, orientation (performed
* by Iowa State University, Center for NDE).
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Figure 6.8 Typical C-scan of test specimen with (+ 45)s orientation (performed
by Iowa State University, Center for NDE).
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and not the grips. Type 2 specimen is used to test a plate with a center notch subjected

to axial loadings. These tests are performed in order to investigate the accuracy of the

predicted damage parameters as obtained from the uniaxial test specimens for a more

general state of stress.

6.2 MECHANICAL TESTING OF SPECIMENS

Before beginning the actual mechanical testing, much attention was given to

specimen preparation, using the recommendations of Carlsson [371 and Tuttle 1381 and

the experimental data items sought as a guide. Quantitative information (stress and

strain) was sought for use in the damage evolution model. Therefore, it was decided to

use foil-resistance strain gages in obtaining the necessary strain data. Each of the

specimens had strain gages mounted on both faces, directly opposite one another. This

was done to determine if eccentric loading occurred during the test or if the specimen

* contained residual stresses as a result of geometrical distortions, so that adjustments

could be made to the raw data for these effects. The gages on each face consisted of a mix

of transverse and longitudinal gages with respect to the axis of loading.

Unlike specimen type 1, the strain field in specimen type 2 is non-uniform and

involved. Strain gaging can only capture a limited amount of information for use in

describing the strain field in the vicinity of the notch. Thus in determining the location

for the placement of strain gages on this type specimen, the qualitative results of an

investigation of like material done by Post, et al. [39] were used. Results from their

investigation showed qualitatively the strain field distribution as obtained through moire

interferometry. From these results, it was determined that a total of 100 strain gages

between the two faces would be sufficient to capture the strain field in the area of

* interest. The strain gage layout on one face for this type of specimen is showvn in
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Figure 6.9. Each of the vertical strips contains 10 gages alternating between transverse

and longitudinal gages.

In order to prevent misalignment of the specimen in the testing machine, hydraulic

grips and a level square were used. These two items provided an opportunity to grip and

align a specimen vertically one end at a time. The hydraulic grips also ensure that there

exists a constant uniform pressure applied to the ends of the specimen in the grips. Also,

these grips will prevent any slippage of the specimen within the grips during testing.

Additionally, the crossheads were calibrated for consistent tracking and equipped with

horizontal mechanical stops. Specimens were loaded by an MTS testing machine at a

crosshead rate of 1/6 in/hr to allow enough time to collect sufficient data during the test.

Data was sampled continuously with all aspects of the test being controlled by an HP

computer and data acquisition system as shown in Figure 6.10. This acquisition system

provided collection and storage of raw and reduced data. As a means of checking the

residual stresses resulting from manufacturing distortions, strain readings were taken

during the process of gripping each end of the specimen in the testing machine. Strains

obtained during this process from all specimens were considered negligible, with strain on

specimens of type 1 on the order of 120 pe and those on specimens of type 2 on the order

of 250 pe. Thus, as mentioned previously, the effects of the residual stresses are nil and

will be neglected.

For specimen type 1, only one of each orientation was loaded to failure. The

remaining five specimens were loaded as indicated in Table 6.3.

Table 6.3 Loadings for test specimens.

Specimen % of Failure or Initial Crack Load

Type 1 IFailure 90 85 80 75 70

Type 2 Initial Crack 90 80
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Figure 6.10 HP data acquisition system.
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Stress-strain curves for selected type 1 specimens of orientations (0/90)s and (± 4 5 )s are

shown in Figures 6.11 and 6.12, respectively. These curves display very well the ductile

behavior of the nr etal matrix composite specimen and the level of confidence of

information collected. It is interesting to note that although the (± 4 5 )s specimen failed at

a lower stress than the (0 /9 0 )s specimen, it failed at a higher strain, indicating good

interaction between the fiber and matrix, yielding increased ductility. One specimen of

each orientation for specimen type 2 was loaded until the formation of an initial crack.

An optical telescope was used to aid in determining this initial crack. The remaining two

specimens were loaded as indicated in Table 6.3. Stress-strain curves of type 2 specimens

looked identical to the curves in Figure 6.11 and 6.12 with respect to shape.
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Chapter 7

IMAGE ANALYSIS AND DAMAGE CHARACTERIZATION

7.1 IMAGE ANALYSIS

* SEM analysis was done on a representative cross section of all type 1 specimens,

using a CAMBRIDGE model S-260 microscope, to obtain a qualitative evaluation of

damage in the specimens. All section surfaces were prepared by making the section cut

0 with a low speed diamond saw followed by grinding and polishing of the cut surface. The

low speed diamond saw eliminates the possibility of introducing damage on the cross

section during sectioning. And thL. grinding and polishing further eliminates any surface

defects possibly introduced by the cutting operation. In short, this procedure ensures to a

high degree that defects discovered during the SEM analysis reflect damage as a result of

the loading.

In Figures 7.1 and 7.2, representative sections of the fracture surface are shown for

the (0 /9 0 )s and (_± 45)s layups, respectively, for the type I specimens. The images are at

0 450 to the surface normal. These photos demonstrate the predominant brittle behavior of

the fibers, in that the surfaces do not display any necking as would occur in ductile

materials. This fact implies that the predominant damage feature at other sections will

* be in the form of fiber splitting/cracking and fiber-matrix interface debonding. However,

on the (t 45), specimen, the fracture surface is more jagged as a result of the increased

fiber-matrix interaction. Increased ductility can be inferred from this photo for this type

of layup as indicated in Figure 6.12. It is important to note the smooth surfaces left after

fiber pullout on each of the layups indicating poor fiber-matrix bonding. Also note the

Molybdenum wire in the upper layer of Figure 7.1 that has all matrix material removed.

This also demonstrates a weak interface bond with the matrix material- Wires normal to
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the direction of loading will serve as a defect in the matrix, otherwise, they tend to assist

the matrix in transferring the load from fiber to fiber.

Other SEM photos were taken on representative cross sections of the remaining

specimens to investigate visible signs of damage. Some selected photos are shown in

Figures 7.3 to 7.6. Each of these photos were taken normal to the cross section.

Figures 7.3 and 7.4 illustrate matrix cracking on specimens with a (0/90). layup for

different load levels. The type and amount of damage shown in these figures are typical

for specimens with this layup. However, specimens with a layup of (t 45), displayed an

increased amount of visible damage of different types, as indicated in Figures 7.5 and 7.6.

Again, this is a result of the increased interaction between the fiber and matrix. Damage

shown in these photos is typical for specimens with this layup.

The images shown in Figures 7.3 to 7.6 are indicative of the type and amount of

damage features observed on all cross sections analyzed. The only measurable feature

found for quantitative purposes was the crack length in the fiber and/or matrix. These

crack lengths were obtained utilizing image analyzing equipment and software. Scanning

of the SEM photos was done with an OmniMedic XRS-6c scanner at 600 dpi. A high

resolution was selected to yield a TIFF image very close to the original photo. The

scanned image was transferred to a UNIX-based Intergraph workstation (InterPro 360)

for analysis with image analyzing software. Attempts were made to automate the pi mess

of measuring cracks on the image; however, available software was not successful in

differentiating between defined damage features and noise features on the image.

Therefore, it was decided to use a semi-manual technique to measure cracks. The

Intergraph ISI-2 software allowed digitizing cracks on the image using a mouse. This

software automatically computed the crack lengths with respect to the photo scale during

70



0

..

Figure 7.3 SEM photo of (0/90). specimen at 90% of failure
load showing matrix cracking.

0

Figure 7.4 SEM photo of (0/90). specimen at 75% of failure
load showing matrix cracking.
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load showing materi cracking.
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digitization. Measured crack lengths were saved in a database for later processing with

the damage characterization theory.

7.2 DAMAGE CHARACTERIZATION

A new damage tensor is defined for a general state of loading based upon

experimental observations of crack densities on three mutually perpendicular cross-

sections of the specimens. The damage tensor is defined as a second-rank tensor in the

form

-2 2
Px Px Py PxPz

[• = xy -y z (7.1)
PxPy PyPz Pz

where p, (i = x, y, z) is the crack density on a cross-section whose normal is along the i-

axis. The crack density for the ith cross-section is calculated as follows:

p P = Pi (7.2)
rp*

Pi=- (7.3)Ai

where ýi is the total length of the cracks on the ith cross-section, A, is the ith cross-

sectional area, m is a normalization factor chosen so that the values of the damage

variable t fall within the expected range 0 < •ij < 1, and p* is as defined below. It is

assumed that Pz = 1/2 py for computational purposes.

There are several techniques that can be used to choose the normalization factor

m. The following are four methods that are used in this study:

(1) P* PxM + PYmaX Pzma

( 2 2 2
(2) P = Pxmax + P Ymax + PZmax
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(3) p* = max (Px..8 + Py. + Pz,)

(4) p+2 2 2
( * PXMax PYmpx + Pzmax

where pin is the value of ýi/A, at the maximum load. The damage tensor obtained

experimentally from equation (7.1) is then used in the constitutive equations to predict

the mechanical behavior of the composite system.

The measured crack densities (pi = Qi/Ai) are shown in Tables 7.1 and 7.2 for the

(0/90)s and (- 4 5 )s layups, respectively. These values are used to calculate the normalized

values i (i = x. y, z) for each layup using the four methods given in the previous section.

These results are then used to calculate the values of the damage variable 6 based on

equation (7.1). In this way, four different damage-strain curves are generated for each

layup orientation as shown in Figures 7.7 and 7.8. With the exception of method one, all

curves demonstrate the expected results of increasing damage with increasing load for

each of the specimen layups. These damage values can then be used in the constitutive

model to accurately predict the mechanical behavior of metal matrix composites.

However, the final r Žsults are presented in a forthcoming paper. The results shown here

are limited to calculations of crack densities and the damage values.
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Table 7.1 Measured Crack Densities for the (0/90)5 layups.

Specimen Load Percentage of
Sem Load Failure Load Px Py
No. (kN)

1 3.74 70 41.82 3.41
6 4.00 75 70.32 36.40
5 4.27 80 100.77 ---
4 4.54 85 106.24 56.43
3 4.80 90 126.68 67.72
2 5.46 100 143.43

Table 7.2 Measured Crack Densities for the (± 45)s layups.

Specimen Load Percentage of 1
N Scie Failure Load Px Py
No. (kN)()

2 2.14 70 49.23 ---
6 2.28 75 49.32 42.44
5 2.42 80 51.84 101.29
4 2.56 85 52.99 117.01
3 2.70 90 56.67 146.59
1 2.86 100 78.82

0
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Chapter 8

UNIAXIAL TENSION

In this chapter, the constitutive equations for the laminate system are formulated

and their numerical implementation is outlined. Special emphasis is placed on the case of

uniaxially loaded specimens. The general formulation is given briefly, followed by a

detailed exposition for the case of uniaxial tension.

8.1 GENERAL LAMINATE ANALYSIS

The constitutive equations for one lamina have been presented in Chapters 3 and 4

for the overall and local approaches, respectively. The general constitutive damage

equation for one lamina takes the following form:

Aq = D: (8.1)

where Ac and Aeare the increments of stress and strain, respectively. The elastoplastic-

damage stiffness tensor D is given by equation (3.35) for the overall approach and

equation (4.23) for the local approach. For the case of plane stress in the kth lamina,

equation (8.1) can be written in an explicit form as follows:IAal ] D11 D12 D13 1 Ai e-
Ac 2  = D 1 2 D22 D 2 3  Ae 2  (8.2)

A012 (k) D 1 3 D 2 3 D 3 3 (k) AE 3  (k)

where the stresses ap, Y2, Y12 and strains F-, P2, -12 are taken with respect to the material

axes x, and x2 in the plane of the lamina. The axis x, is taken along the fiber direction

as shown in Figure 8.1. In equation (8.2), the matrix [DI is the 3x3 matrix representation

of the fourth-order tensor D for the case of plane stress.

Let x and y be the structural axes for a typical lamina in plane stress, as shown in

Figure 8.2. The angle 0 between the material and structural axes is the same angle
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Figure 8.1 Material axes for a typical lamina under plane stress.
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Figure 8.2 Structural axes for a typical lamina under plane stress.
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between the fiber direction and the global direction (the loading direction for the case of

uniaxial tension). The transformation equation for the stresses between the material and

structural coordinate systems for the kth lamina takes the form:

[C2 s2  -2cs 1[ 1
Aay = c 2  2cs A 2 (8.3)

A cxy (k) cs -cs c 2 -s 2  A01 2  (k)

where c = cos 0 and s = sin 0. The corresponding transformation equation for the strains

takes the form:

A 1 [ c 2 2 cs AEx
A F2 = s2 c 2 -cs A•]y (8.4)

AF12 (k) -2cs 2cs c 2 -s 2  Axy (k)

Substituting equation (8.4) into equation (8.2), then substituting the resulting

equation into equation (8.3), one obtains the general constitutive equation for one lamina

in the structural coordinate system in the following form:

A 1x QII Q12 Q13] A x

SAy = Q12 Q22 Q23  A{ y (8.5)

AOxY (k) L Q13 Q23 Q33 (k) AEY (k)

where the index k indicates that this equation applies to the kth lamina. In equation

(8.5), the matrix [Q] takes the form:

Q1 12 Q131 [c2 S2  -2cs 1DI, D12 D13 1 [c 2  S2 1s
Q12 Q22 Q2 = s2 c 2  2cs D 12 D22 D23  s 2 c 2  -cs

[Q 13 Q23 Q33 (k) LCS -cs c 2 -s 2  D 13 D2 3 D 3 3 (k) -2cs 2cs c 2 -s 2

(8.6)

where the angle 0 used to calculate the values of c and s corresponds to the kth lamina.
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For the types of composite laminates considered in this project, certain assump-

tions can be made regarding the distribution of strain across the thickness of the

laminate. The two types of layups considered (0/90)s and (t 45).) have symmetric

stackings of plies where each ply is in a state of plane stress. In addition, the thickness of

each ply is constant. These three conditions justify the assumption of the formation of a

rigid bond between the adjacent laminas (plies). Therefore, it follows that under these

conditions (plane stress, symmetry, and constant ply thickness), the strains are the same

at all points on a line through the thickness of the laminate.

Let h be the thickness of the laminate consisting of n plies (laminas), then the

thickness of each ply is h/n. Consider an element of the laminate with sides of unit

length parallel to the x and y axes. Let ANI, ANy and ANxy be the incremental force

resultants on this element as shown in Figure 8.3. Considering the equilibrium equations

for the laminate element, one obtains:

ANX 1o
AN ~ h o
ZXy =h Aay (8. 7)

ANxy Ao a3  (k)

Substituting for the stress vector from equation (8.5) into equation (8.7) and simplifying,

one obtains:

* ANX ~ Al 1 A12 A13  e

ANY -- A12 A22 A23  A( (8.8)

ANXy L A13 A23 A33  A ey

where the laminate matrix [A] is given in component form by:

n

Aii -h QjU•k) (8.9)
n k=lQ~

0



- - -- ANx

0h
Sf

S• ,.,h • A (k)

xx

/k lamina

AN y t/Acy(k)

Figure 8.3 Laminate element with incremental force results.
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A general laminate constitutive equation can now be obtained by using average laminate

stresses defined as follows:

A~y = ANX A cry = ANY A axy = ANXY (8.10)

h A -h h

Combining equations (8.8) and (8.10), one obtains:I A0 ~ ~ A,] A1 1*2 A~

Ao AL A L~ A A F-Aayxy (avg) A 13 A;3 A;3• y

where "avg" indicates average quantities and the components of [A*] are given by:

A 1 Aij (8.12)

The general laminate equations given in this section will be used in the next section to

generate specific equations for the special case of a composite laminate subjected to

uniaxial tension.

8.2 UNIAXIAL TENSION

In this section, explicit equations are developed to study damage in uniaxially

loaded specimens of the two laminate layups discussed earlier. Consider a composite

laminate subjected to uniaxial tension in x-direction. Let AN, be the incremental force

resultant in the x-direction where ANY = ANy = 0. Substituting this in the laminate

constitutive relation given by equation (8.8) and solving for the incremental laminate

strain vector, one obtains:

1Ex S11 S12 S13 ANx

AEy S 12 S22 S23  0  (8.13)

As,,. �y 1 .S S 9 3 S 3
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where the matrix [S] is the inverse of the matrix [A], i.e., [S) = I Simplifying equation

(8.13), one can rewrite it in the following form:

Acy = S12 [ NX (8.14)

A %. 13

Utilizing the assumption of constant strain across the laminate thickness, the incremental

lamir, strain vector is then given by:

A 1y S12 ANx (8.15)
A% [ý S13

Next, one calculates the stresses in each lamina. This is done by substituting

equation (8.15) into equation (8.5) to obtain:

Aox Q11 Q12 Q13 Sil

A I Q 12 Q22 Q23 S12 ANx (8.16)

AIxy [Q13 Q 2 3 Q 3 3 (k) S13

The remaining part of the derivation will be specific to each type of laminate layup. It is

seen that the general laminate equations will simplify for these two cases because of the

layup symmetry.

8.2.1 Laminate Layup (0/90).

The first type of laminate layup (0/90)s consists of four plies distributed

symmetrically as shown in Figure 8.4(a). The angles 0 (k) for this layup are clearly given

by:

0(1) = 0(4) = 00; 0(2) = 0(3) = 900 (8.17)
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The values of 0(k) given in equation (8.17) are used to calculate the transformation

matrices for the laminas. They are then substituted into equation (8.6) to obtain the

following transformed stiffness matrices for the four laminas:

Qll Q12 Q13 D11 D 1 2 D 1 3

Q12 Q22 Q23  D12 D22 D2 3  (8.18a)

SQ13 Q23 Q33 (1),(4) D13 D2 3 D3 3

Q1 1 Q 12 Q13  D 2 2  D 12  -D 2 3

Q12 Q22 Q23  D 12  D11  -D 13  (8.18b)

Q13 Q23 Q33 J (2),(3) -D 23 -D 13 D3 3

Equations (8.18) are then substituted into equation (8.9) with n = 4 to obtain:

D11 + D22  2D 12  D13 -D 23

[Al = h 2D 12  D11 +D 2 2  -(D 13 -D 23 ) (8.19)

0 D 13 -D 2 3 -(D 13 -D 2 3 ) 2D 3 3

The inverse of matrix [A] is computed analytically using the symbolic manipulation

program REDUCE. However, since only three terms of the inverse matrix [S] are needed

as shown in equation (8.16), there is no need to present the complete inverse matrix here.

The three needed terms are given by:

S11 =2 [2 D33 (D11 + D 2 2 ) - (D 13 - D23 )2] (8.20a)

S 1 2 [4 D 12 D3 3 + (D 13 - D2 3 )2 ] (8.20b)
JAI

S 13 = _2 (D 2 3 - D 13 ) (8.20c)

JAI

and the determinant I A I is given by:

IAI = 2h (DI1 + D22 - 2D 12) ID33 (D11 + D22 + 2D 12) - (D13 - D23)21 (8.20d)

Substituting equations (8.20) into equation (8.15) and simplifying, one obtains:
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A_ _ 2D 33 (D11 +D22 ) -(D 13 -D 23)2

= { AN- 4D 12 D3 3 -(D 1 3 -D 2 3 )2  (8.21)

Aexy D 2 3 -D 13

In equation (8.21), one considers ANx as the independent "time" variable t in order to

* solve the incremental system of equations. In the limit as t -4 0, the system of equations

(8.21) can be reduced to a system of simultaneous differential equations in ex, a. and axy.

Therefore, the governing differential equations are given by:

de,,

dt 2D 3 3 (D1 1 + D 2 2 )-(D 1 3 -1D2 3 )2

dey A--•h - D12D33 -(D 13 -D 23 )2  
(8.22)

d D 23 -D 13

dt

The above system of ordinary differential equations is solved numerically using the

IMSL routine DIVPRK. This solution subroutine uses the Runge-Kutta-Vernor fifth-order

and sixth-order methods for solving a system of simultaneous ordinary differential

* equations. It should be noted that the strain vector obtained in this way represents the

laminate strain as well as the strain of each lamina.

In order to obtain the stresses in each lamina, one repeats the above procedure

0 four times for each of the four laminas using equations (8.16) and (8.18). However, due to

symmetry of the laminate layup, only two systems of differential equations ieed to be

solved. These two systems are given by:

0

0
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d ax-dt D11 D12 D13 2 D33 (DI1 + D22) - (r).,-D23) 2

doy 2 2h )2
D 1 2 D 2 2 D 2 3  -4D12D33-(D13-D23)2

doxy D 13 D 2 3 D 3 3  D 2 3 -D 13

(dt ),(4)

(8.23a)

d D22  D12  -D23 2D3 3 (Dll+D 2 2)-(D, 3 -D 2 3 ) 2 1
dc

-'y 2h D 1 2  D11  -D13 -4D 1 2 D3 3 -(DI-D 2 )2

dcx.y -D 23 -D 13 D33  D23 -D 13

dt (2;,(3)
(8.23b)

8.2.2 Laminate Layup (± 45)8

The second laminate layup considered in this project is (± 45), which consists of

four cross-ply laminates distributed symmetrically as shown in Figure 8.4(b). The angles

0 (k) for this layup are clearly given by

0(1) = 0(4) = 450; 0(2) = 0(4) = - 450 (8.24)

Substituting the values of O(k) from equation (8.24) into equation (8.6), one obtains the

following transformed stiffness components for the four cross-plies (note that the resulting

matrices are symmetric):

(1)1M (4D + D22 - 4D + 2D + D11) (8.25a)
113 4D23  22 D13  D12  D~

() = 1) (4D33 + 4D23 + D22 + 4D]3 + 2D 12 + D11) (8.25b)

Q3) -(D22.2D12 + Did (8.25c)
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Q(1) = (. 4D 33 + D22 + 2D 12 + D 1 ) (8.25d)

Q() =1 (2D1) D22 - 2D 13 + D11) (8.25e)
13 - 2" - 2 D 3 1

(3) = " 2D 23 - D22 + 2D 1 3 + D11 ) (8.250f

Q3 23 D2 2

Q(2) Q (1) (8.25h)
0 2 2 -"Qll

Q(2) = (1) (8.25i)

Q(2) (5 1) ( 8.25j

13 2(2) _ Q (1) ( 8,25k )
13=- 2 3

2(2) _ Q (1) (8.251)

Substituting equations (8.25) into equation (8.9) with n = 4, and simplifying, one obtains

the matrix IAI for this layup configuration as follows:

4D 33 +D 22 +2D 12 +Dj1  -4D 33 +D2 2 + 2D 12 +Dl1  2(D23 - D1 3)

[AI = h +4D33+D2 2 + 2D 12 +Dll 4D 33 +D 22 +2D12 +DI 1  -2(D 23 _-D13 )

2(D23 -D13) -2(D 2 3 -D1 3 ) D 2 2 - 2D 12 + D1 1

(8.26)

Inverting the above matrix symbclically using the program REDUCE, the required three

terms SIP, S12, S 13 are obtained as follows:

1= 1 (D11 + D22 - 2D12) (Dl, + D2 2 + 2D 12 + 4D3.3) - 4(D 13 - D 2 3 )2  (8.27a)

S12 = - I (DI, + D2 2 - 2D1 2 ) (D31 + D2 2 + 2D12 - 4D 33) - 4(D 13 - D 2 3 )2  (8.27b)

S 13 = i4 (D 1 3 - D23) (DI, + D2 2 + 2D 12 ) (8.27c)

JAI
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and the determinant I A I is given by:

IAI = 4h (D11 + D22 + 2D 12) [D33 (Dl1 + D22 - 2D12 ) - (D 13 - D 2 3 )2 1 (8.27d)

Substituting equations (8.27) into equation (8.15), and considering ANx as the "time"

variable, one obtains the following equations in the limit as t - =:

de,,

dt = h {(D 1 1 +D 2 2 -2D 12 )(D 1 1 +D 2 2 *2D 12 +4D 3 3)-4(D1 3 -D 23 )2

-e h D 23
d -(Dll +D 2 2 -2D 12 )(D 1 1 +D 2 2 +2D 12 +4D 3 3 ) +4(D 1 3 - D232

dt y 4(D 1 3 -D 2 3 )(D 1 1 +D 2 2 + 2D 12 )

dt
(8.28)

Equations (8.28) represent the governing systems of ordinary differential equations for the

strains ax, ey and exy. The system is solved numerically using the IMSL routine DIVPRK.

In orier to obtain the lamina stresses, one substitutes equation (8.28) into equations

(8.16) and (8.25) to obtain the following two systems of differential equations:

d ax,

dt [ Q11 Q 12 Q13 1 (D 1 1 +D 2 2 -2D 1 2 )(D 1 1 +D 2 2 +2D 1 2 +4D 3 3 )-4(D1 3 -D2 3 )2

Q_ -_ 12 Q22 Q23 -(Dll+D 2 2 -2DI 2)(Dll+D 2 2 +2DI2+4D 3 3 )+4(D 1 3 -D 23 )2
dt JAI

dAx-y Q13 Q2 3 Q3 3 (1) 4(D 13 -D 2 3 )(D1 1 +D 2 2 +2D 12 )
dt (1),(4)
dt 

(8.29a)

doxd ]
dtc~ Q11 Q 1 2 Q13 (Dll+D 2 2 -2D 1 2 )(D 1 1 +D 2 2 +2D1 2 +4D 33)-4(D1 3 -D 2 3)2

dX Q Q12 Q 2 2 Q2 3  -(Dll+D 2 2 -2DI 2 )(DLI+D 2 2 +2DI 2 +4D33)+4(D13-D,2:-OdL JAI Q13 Q23 Q33 1(2) 4(D1 3 -D 23 )(DI- -0 2 2+2D1 2)

dt (2),(3)

(8.29b)
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Chapter 9

FINITE ELEMENT ANALYSIS

In this chapter, the anite element implementation of the damage theory is

formulated. The analysis covers the theory for both metals and metal matrix composites.

However, the application of the finite element analysis is performed for metals only. Its

application to metal ir atrix composites is time-consuming and is not ready at the time of

I writing of this report. In addition, the finite element formulation is restricted to problems

of plane stress since the composite plates tested are in a state of plane stress. First, the

constitutive damage model is recast for a state of plane stress, then the finite element

implementation and applications are presented.

9.1 PLANE STRESS

The constitutive damage model is formulated fob a thin plate subjected to a state of

plane stress. The equations given in this section are used in the finite element

formulation for the problem solved in the next section. It is assumed that the plate lies 'n

the 1-2 plane under plane stress conditions with 0533 = (13 = 023 : 0. Therefore, the

Caucl-y stress tensor o and the damage tensor 4 can be represented by

Oil 0120

101 012 022 0 t9.la)

L 0 0 o-

011 012 013

10= 012 022 023 (9.1b)

031 0.32 033

A case of plane damage in the 1-2 plane will be assumed when using equation (9.1b).

Thereforc, one uses 033 = 013 = 023 = 0 in equation (9.1b). This assumption may not be
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physically justified but is used here to simplify the equations. Anyway, the magnitude of

033 is so small that it is neglected in the derivation.

In order to derive an expression for the damage effect tensor M, it is first necessary

to symmetrize the effective stress of equation (2.14). The following symmetrization

procedure is then used

FY .• [a .(I _ Or' + (12 _(- • 9.2t

It is clear from equation (9.2) that one needs to derive an expression for the inverse of 2 -

0. This is accomplished by using the symbolic manipulation program REDUCE.

Therefore, one obtains:

2
(1-022)(1-033)-0 2 3  013023 +012(1-033) 012023+013(1 -022)

[i - )ij]1 = ( 13023+012(1_033) (1_01X 1_-033)_013 012013+023(1-011) (9.3aj

012023 +013(1-022) 012013+023(1-011) (1-411X1-022)-012

where A is given by

A (1 - 011) (1 - 022) (1 -433) - 023 (1 - -,11)

2 2
13 (1 - 022) - 012 (1 - 033) - 2012023013 (9.3b)

In the above equations for the plane damage model, 013 = 023 = 033 = 0.

Substituting equations (9.1a) and (9.3a) into equation (9.2) and simplifying, one

can rewrite the resulting equations in the form

FI 1 1  M 1 1 M 1 2 M 1 3  5111

022 M 2 1 1%122 M 2 3  022 (9.4)

012 M 3 1 M 3 2 M 3 3  012

where the coefficients of the matrix [MI of equation (9.4) are given by:
0W

(1 - 022) (1 - 0,33) - 0232Mil A (9.5a)
92A

92



02

M22 =(10- 1 1) (1 A- 033) - 092

M 3 3 - + (9.5c
2

M12 = M21 = 0 (9.5d)

M 13 ý2 M 3 1 + p012 4023 + *12 (1 - 4k33) (9.5e)

A

M 23 = 2M 32 = M13  (9.5f)

Equation (9.4) is the matrix representation of the tensorial equation (2.14) based

on the symmetrization procedure of equation (9.2). The resulting matrix reopresentation of

M is now given explicitly in equations (9.4) and (9.5) for the case of plane stress. It is also

clear from equation (9.4) that the stresses and damage variables are now represented by

3xl vectors for this case. This is again emphasized here as

to] = [lol 022 '112 (9.6a)

f)) [ll 22 012IT (9.6b)

The above representations of the tensors a, • and N are used in the finite element

implementation of the computational model.

9.2 FINITE ELEMENT IMPLEMENTATION

Using an updated Lagrangian description, the models are implemented

numerically using the finite element method. The basic assumptions and equations for

the finite element formulations have been presented by Kattan and Voyiadjis 1281 and

Voyiadjis and Kattan [291 for the first model. The final incremental equilibrium

equations in the updated Lagrangian description are given by (Kattan and Voyiadjis, 1281)

([KI + IKI(0) + IKI(NC)) {dv] = (dP} (9.7)
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where {dvl is the unknown incremental vector for the nodal displacements and IdP} is the

corresponding incremental vector for the nodal forces. In equation (9.7), [K1 is the

symmetric "large displacement" matrix, IK1g is the symmetric "initial stress" matrix, and

[K](NC) is the non-symmetric "displacement dependent load" matrix. These matrices are

given by

aNia Dijl 8Nkb dV (9.8a)

K~) fff aNka jNkb
ab( JJJ •i •k dV (9.8bl

""ab = a Xi aXj

and
K(NQ) aPi A(.c

(N) rr ° X-- Njb Nia dV+ ff TibidA (9.Sc,ab x a

where Nij are the shape functions, Tib are defined by the following relation 140,411

""X- uj = Tib qb (9.9)

and qb are the incremental nodal displacements. The above equations are applicable to

both models provided the appropriate elasto-plastic, damage stiffness matrix D is

substituted. The incremental vector for the nodal forces is given as follows:

dPa= fff (dp1 ) Nia dV ff (dti) Nia dA - fff Gij Nia dV (9.10)
axi

The overall approach does not contain the third term of the above equation since Gj = 0

as given by equation (3.35). This term results from the residual stress tensor Gij which is

0 present in the elasto-plastic, damage constitutive equation of the second model.

The updated Lagrangian elasto-plastic, damage model used in this work is

successfully implemented for both damage models in the finite element program DNA

(Damage Nonlinear Analysis) developed by the authors. In this program, two convergence
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criteria are used to terminate the equilibrium iteration at each load increment. At the

end of each iteration, the solution obtained is checked using the internal energy criterion

AWn(n) as follows:

{Au}(i)T (m+l(RI - m+l{F}(i)) -E {Au}(i)w (m+l(R} - mrF)) (9.11)

where {Au}(i) is the displacement increment obtained in the ith iteration, T is used to

denote the transpose of a vector, and e{R} and fe{F} are the internal force and external

force vectors in the mth increment, respectively. The left-hand side of the inequality

represents the work done by the out-of-balance force on the displacement increment, and

the right-hand side is the initial value of the same work. In equation (9.11), CE is a

prescribed tolerance for internal energy. After the above convergence criterion is

satisfied, the Euclidean norm of the damaged residual load vector obtained currently is

compared with the assumed damage residual load vector, such that

II (AGRI 11 - II {CGR) I11 < eG (9.12)

Cfff Gij aN d (9.13)

k--1 a Xj k

where N is the number of elements, IAGR} is the assumed load vector due to the tensor G,

ICGR) is the currently obtained damage residual load vector used in finite element

analysis, and EG is a prescribed tolerance for the damage residual stress. If the criterion

expressed in equation (9.12) is not satisfied, then (AGRI is replaced by the currently

obtained damage residual load vector. In this case, the incremental load vector is re-

calculated and the same procedure is repeated.
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9.3 CENTER-CRACKED THIN PLATE UNDER IN-PLANE TENSILE FORCES

The center-cracked thin plate shown in Figure 9.1 is used to investigate the

proposed models. The plate is made of aluminum alloy 2024-T3 with elastic properties

E = 73,087 MPa and v = 0.3. Initial yielding is characterized by Yo/F = 190.5 MPA.

Isotropic and kinematic hardening are represented by the parameters c = 792.9 MPa and

b = 275.8 MPa, respectively. A state of plane stress is assumed since the thickness of the

plate (t = 3.175 mm) is very small compared to its other dimensions.

The plate is subjected to a monotonically increasing in-plane uniaxial loading along

the y-axis as shown in Figure 9.1. A quarter of the plate is discretized by finite elements

due to the symmetry in geometry and loading, The finite element mesh used is shown in

Figure 9.2. It consists of eight-node isoparametric quadrilateral elements distributed in

an optimum way around the crack tip. The shown mesh has been used previously by

Tsamasphyras and Giannakopoulos (421 and was shown to be an optimum mesh for this

type of problem. The total number of elements is 381 with 1228 nodes.

Two types of problems are solved; one is elastic and the other is elasto-plastic.

Each type of problem is solved with and without damage effects using both models

outlined previously. For all these problems, the same type of loading is used. In each

case, the specimen is monotonically loaded with an in-plane incremental uniform tensile

loading of 2 MPa until microcrack initiation is observed. This point is identified when

numerical instability occurs in the overall damage parameters.

The first type of problem investigated is when the plate behavior is elastic. The

problem is solved numerically twice; once without damage and the other with damage.

These two cases are compared to show the effect of damage on the elastic behavior of the

plate. Numerical instability is observed in the damaged elastic plate at the element just
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Figure 9.1 (a) Thin plate with a center crack, and (b) Quarter of
plate to be discretized by finite elements.
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to the right of the crack tip (element number 15 in Figure 9.2) when a loading of 234 MPa

is reached. The results of the finite element analysis are shown in Figures 9.3 to 9.6.

In Figures 9.3a and 9.3b, the contour lines for the stress, oyy, are shown for both

the undamaged and damaged elastic plates. It is clear from these figures that smaller

stresses occur in the damaged plates. The maximum stress has a value of 2348 MPa in

the undamaged plate compared to 2308 MPa for the damaged plates. The contour lines

for the strain, eyy, are next shown in Figures 9.3c and 9.3d. It is observed that the plate

undergoes large strains when damage analysis is used compared to the undamaged

analysis. The maximum strain value obtained is 0.0238 for the undamaged analysis and

0.0244 for the damaged analysis.

Figure 9.4 shows the contours for the damage variables 0xX, yy, oxy and overall

damage parameter P around the crack tip. The maximum damage value of 0.1230 occurs

also in the y-direction as shown in Figure 9.4b. The contours for the overall damage

parameter P around the crack tip are shown in Figure 9.4d where the maximum overall

value of 0.51 x 10-4 is obtained at the crack tip element. Figure 9.5 shows the evolution of

damage with the load P at the macro-crack initiating element (element number 15 in

Figure 9.2) where monotonically increasing relations are obtained for the four damage

variables vs. the load P. All the damage values stabilize when the crack initiation load of

234 MPa is reached. For the elastic damage model, the load reaches a peak value of

234 MPa. Once this load is attained, damage increases without further increase in load

thus initiating macrocracks. These results are shown partially in Table 9.1 for the

undamaged plate and Table 9.2 for the damage plate.

The second type of problem solved is when the plate is elasto-plastic. In this case,

the two models discussed earlier are used in the solution. Numerical instability is also

observed in the damaged elasto-plastic plate at the element just to the right of the crack
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(c) (d)

Figure 9.3 Contour lines for the stresses and strains in the y-direction for the elastic
model at a load of P = 234 MPa: (a) Stress oyy contours for undamaged
plate, (b) Stress yy contours for damaged plate, (c) Strain Fyy contours
for undamaged plate, (d) Strain "yy contours for damaged plate.
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Figure 9.4 Contour lines for the damage variables for the elastic model at a load of
P = 234 MPa: (a) Damage variable Oxx contours, (b) Damage variable y
contours, (c) Damage variable 0,y contours, (d) Overall damage parameter
Scontours.
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Table 9.1 Maxi-num values for all the models without damage.

Elastic Model Elasto-Plastic Model 1 Elasto-Plastic Model 2

Critical
Load 234 MPa 260 MPa 264 MPa
P Cr
Sxx 1896 MPA 2046 MPa 2075 MPa

"yy 2348 MPa 2522 MPa 2558 MPa

axy 634 MPa 646 MPa 656 MPa

S0.0168 0.0179 0.0182

£yy 0.0238 0.0266 0.0269

0.0214 0.0266 0.0270

Table 9.2 Maximum values for the stresses, strains, and damage variables for
all the damage models.

Elastic Model Elasto-Plastic Model 1 Elasto-Plastic Model 2

Critical
Load 234 MPa 260 MPa 264 MPa
Pcr

GXX 1858 MPa 1906 MPa 1930 MPa

Cyy 2308 MPa 2370 MPa 2406 MPa

0XV 586 MPa 518 MPa 507 MPa

_XX 0.0169 0.0185 0.0189

£yy 0.0244 0.0284 0.0287

E 0.0219 0.0271 0.0273

oxx 0.1045 0.1507 0.1959

Oyy 0.1230 0.1776 0.2312

oxy 0.0799 0.1080 0.1427

Op 0.1942 0.2730 0.3573

Overall
Damage 0.51 x 10-4 0.64 x 10-4 0.77 x 10-4

Parameter
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tip (element number 15 in Figure 9.2) when loadings of 260 MPa and 264 MPa are

reached for the first and second models, respectively. The results of the finite element

analysis are shown in Figures 9.6 to 9.13. In Figures 9.6a and 9.6b, the contour lines for

the stress ayy are shown for both the undamaged plasticity models. The contour lines for

the first and second damaged plasticity models are shown in Figures 9.6c and 9.6d,

respectively. It is clear from Figures 9.6a and 9.6c that maximum stresses of 2522 MPa

and 2370 MPa are obtained at a load of 260 MPa for the first undamaged and damaged

models, respectively. On the other hand, Figures S.6b and 9.6d show that maximum

stress values of 2558 MPa and 2406 MPa are obtained at a load of 264 MPa for the second

undamaged and damaged models, respectively.

Similarly, the contours for the shear stress, GX, are shown in Figure 9.7. In the

first undamaged and damaged models, the maximum values obtained are 646 MPa and

518 MPa, respectively, at a load of 260 MPa. Alternatively, the corresponding values for

the second model are 656 MPa and 507 under a load of 264 MPa.

The strain contours ', are shown in Figure 9.8. In the first model, maximum

values of 0.0266 and 0.0284 are obtained for the undamaged and damaged plates,

respectively. This is compared to 0.0269 and 0.0287 obtained using the second model.

Similarly, in Figure 9.9, the shear strain contours are shown. The maximum values

obtained using the first model are 0.0266 and 0.0271 compared to 0.0270 and 0.0273

obtained using the second model. The reader is referred to Table 9.1 for a summary of

the maximum values obtained for the undamaged plate, and Table 9.2 for the maximum

values for the damaged plate.

The contours for the damage variables 0xx, 0YY, oxy and overall damage parameter

are shown in Figure 9.10 for both models. The results of the first model are 'hown in

Figures 9.10a, 9.10b, 9.10c and 9.10d, whereas those for the second model are shown in
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Figure 9.6 Contour lines for the stress a for the elasto-plastic models:
(a) Undamaged model 1 at a io'ad of P = 260 MPa, (b) Undamaged
model 2 at a load of P = 264 MPa., (c) Damaged model I zat a load of
P = 260 MPa, (d) Damaged model 2 at a load of P = 264 MPa.
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Figure 9.7 Contour lines for the stress oxy for the elasto-plastic models:
• (a) undamaged model 1 at a load of P = 260 MPa, (b) undamaged

model 2 at a load of P = 264 MPa, (c) damaged model 1 at a load of
P = 260 MPa, (d) damaged model 2 at a load of P = 264 MPa.
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Figure 9.8 Contour lines for the strain for the elasto-plastic models:
(a) undamaged model 1 at a ]had of P = 260 MPa, (b) undamaged
model 2 at a load of P = 264 MPa, (c) damaged model 1 at a load of
P = 260 MPa, (d) damaged model 2 at a load of P = 264 MPa.
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Figure 9.9 Contour lines for the strain v. for the elasto-plastic models:
(a) undamaged model 1 at a load of P = 260 MPa, (b) undamaged
model 2 at a load of P = 264 MPa, (c) damaged model 1 at a load of
P = 260 MPa, (d) damaged model 2 at a load of P = 264 MPa.
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Figure 9.10 Contour lines for the damage variables for the elasto-plastic models:
(a) damage variable 0. for model 1 at P = 260 MPa, (b) damage
variable y for model 1 at P = 260 MPa., (c) damage variable Oxy
for model Y at P = 260 MPa, (d) overall damage parameter P for
model 1 at P = 260 MPa, (e) damage variable 0. for model 2 at
P = 264 MPa, (f) damage variable O.. for model 2 at P = 264 MPa,
(g) damage variable Oxy for model 2 at P = 264 MPa, (h) overall
damage parameter P for model 2 at P = 264 MPa.
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Figures 9.10e, 9.10f, 9.10g and 9.10h. The maximum values for these models are shown

in Table 9.2. The evolution of damage with load is shown in Figure 9.11 at the macro-

crack initiating element. In Figures 9.11a and 9.11b, the damage variables are shown to

increase monotonically with the applied load P for both models. It is noted that the

increase is very rapid just before crack initiation. A rapid increase is clearly shown for

the damage variables when the value of Ocr is reached. In particular, the principal

damage variable 0 reaches its critical value of 0.2730 for the first model and 0.3573 for

the second model. The principal damage variable Op is given by:

2 + On ++ (9.14)

2 + __

Figure 9.12 shows the evolution of overall damage with the loading at the crack tip

element where it is clear that the variation of 0 with the load P is monotonically

increasing. It is clear from this figure that the overall damage value stabilizes when

loads of 234 MPa, 260 MPA and 264 MPa are reached for the elastic model, the first and

second elasto-plastic models, respectively. The above three values are considered the

crack initiation loads resulting from the three models. This is compared wNitih the experi-

mental average value of 263.G MPa obtained by Chow and Wang (1988). A summary of

these results is partially shown in Table 9.1 for the undamaged plate and Table 9.2 for

the damaged plate. Finally, the development of the plastic zone around the crack tip is

shown in Figure 9.13 for both models. The differences observed in this figure are mainly

attributed to the way the effective stress is defined in each model.

It is concluded that in both models, the stresses are consistently smaller in the

damaged than the undamaged models. However, the situation is reversed for the strains.

It is also shown that the damage variables increase monotonically with the applied load.

The critical values for the damage variables needed to initiate macrocracks are within the
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Figure 9.13 Development of the plastic zone in front of the crack tip
for the elasto-plastic models: (a) damage model 1 at
P = 260 MPa, (b) damage model 2 at P = 264 MPa.
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range 0.2 to 0.8. This is in agreement with the work of Lemaitre (1984, 1986). The

development of the plastic zone around the crack tip is also shown for both models. When

analyzing the results obtained from the two models, the reader should keep in mind that

the second model is based on a much more rigorous derivation considering fewer

assumptions in the formulation. However, the simplicity of the first model should not be

overlooked.
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Chapter 10

CONCLUSION

A micromechanical constitutive model is formulated for the analysis of damage and

plastic deformation in a composite system consisting of elastic fibers and an elastoplastic

matrix. Small strains are assumed throughout the derivation. Two different approaches

are considered in formulating the constitutive model. The first approach utilizes a single

damage variable and treats the composite system as an orthotropic continuous medium.

However, the other approach considers local damage effects and uses two independent

damage variables for this purpose. Explicit comparisons between the two approaches are

outlined and the resulting equations are compared. Generalized equations are derived for

the yield function, flow rule, kinematic hardening, and the damage-elastoplastic stiffness

tensor using both approaches.

The main features and results of the proposed model are summarized below:

1. An anisotropic yield function is derived for the composite system based on

using a von Mises type yield criterion for the effective matrix configuration.

2. A non-associated flow rule is obtained for the damaged composite system as

opposed to an associated rule for the undamaged matrix material.

3. A generalized kinematic hardening rule is derived for the composite system.

This rule is shown to consist of a combination of a generalized Ziegler-

Prager rule and a Phillips-type rule.

4. A damage-elastoplastic stiffness tensor is derived for the damaged composite

system. This tensor is derived using both the local and overall approaches.

The experimental part of this project consisted of testing the two types of

specimens (uniaxial specimens and center-cracked plates) each with two different
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laminate layups ((0/ 90 )s and (.t 45),). Complete testing of the specimens was conducted.

This was followed by image scanning and analysis of the uniaxial specimens. However,

the scanning of the center-cracked plates was not completed at the time of writing of this

report. Therefore, only the results of the scans conducted on the uniaxial specimens are

presented in this report. Some of these results are -urrelated with the theoretical and

numerical predictions based on the proposed damage models. In thc3e models, a 1--w

damage tensor is defined based on the experimenta& 7-ýasurements of crack density on

the cross-sections of the damaged specimens. Further, such measurements are nec ded to

be performed on the damaged center-cracked plates in order to complete the investigation.

Numerical imrlementation of the proposed damage models is carried out in two

stages. The first stage was successfully completed and the results are shown in the last

chapter of this report. This stage consisted of the finite element coding and analysis of

the damage theory for metals. The finite element program DNA (Damage Nonlinear

Analysis) was written and tested on center-cracked metal plates. The second stage of tbis

step is to extend the finite element formulation to metal matrix composites and extend

the capabilities of the program DNA to handle these materials. Work on this stage is in

progress at the time of writing of this report. The results of this stage are not reported

here pending the completion of the investigation.

In conclusion, the following two remaining tasks are still in progress:

1. Scanning and image analysis of the second type of specimens, namely, the

center-cracked plates.

2. Completion of the finite element program DNA and extending its

capabilities to handle metal matrix composites. The finite element program

as it stands now can deal with damage and plastic deformation in metals

only.
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One of the major reasons for the delay in carrying out the above two tasks is

attributed to the consideration of two approaches for the analysis of damage in composite

materials. These two approaches treat the problem of damage in composites from two

different perspectives; local and overall. Furthermore, the two approaches are a direct

and natural result of the systematic and consistent method that is used in the investiga-

tion. As a consequence, the time and effort that were spent in the development of two

distinct methods was underestimated. Furthermore, the two approaches to this problem

did not appear in the original proposal of this project; but resulted as a natural

consequence of the analysis.
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APPENDIX

The damage transformation equations for the elastic and plastic parts of the

overall strain rate tensor i are giver, by [191:

M M-T: , + -WT:E, (Al)

"= x:" z z (A2)

where the overall tensors X and Z are given by:

x a2 M-1 (A3)IV a, -.

Z 3 a3 M 1  N:N:(o -( ) (A4)
__ a, -

and the scalar coefficients a1, a2 and a3 are given by:

a1 = -b af K(-C ) a (A5)

aaf faf

a2 =b - - a) 0 __ 9_ (A6)•% ~ ~(,-r -ff

a3 = - : : " : E (A7)

The material time derivative Mý-T appearing in equations (Al) and (A7) is given by

[191

-T M - M-T. T M-T (A8)

where

M M(A9)
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The tensor aM/•p is of the sixth rank and its components are given by aMijkl/a.mn. The

operation given in equation (A9) is defined by a:b =- aijmmnbmn where a is a sixth-rank

tensor and b a second-rank tensor. For details of the derivation of equation (Al) through

(A9) in this appendix, the reader is referred to the work of Voyiadjis and Kattan 1191.

In a way similar to the derivation of equation (A2), one can postulate the following

damage transformation equation for the matrix plastic strain rate tensor "

m = x m : im + z m (AlO)

where the fourth-rank tensor Xm and the second-rank tensor Zm can be defined similar to

the tensors X and Z, respectively. The remaining part of the appendix is devoted to

deriving a relation between the matrix tensors Xm, Z' and the overall tensors X,Z.

Substituting equations (2.9) and (2.12b) into equation (AlO), simplifying and comparing

the result with equation (A2), one obtains the desired transformation relations:

X = Amp: X m : 'mp (All)

Z = Z mn: A mP-' (A12)V. AW

Alternatively, equations (All) and (A12) can be written in terms of the matrix tensors Xm

and Z', as follows:

X n = AmP : X : (A13)

Z m = A m P Z (A14)
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